Caifeng Long, Wenbo Wang, Jialiang Du, Gangling Xu, Chuanfei Yu, Lan Wang
{"title":"Developing a human monoclonal antibody combination CRM25 to prevent rabies after exposure.","authors":"Caifeng Long, Wenbo Wang, Jialiang Du, Gangling Xu, Chuanfei Yu, Lan Wang","doi":"10.1016/j.ijantimicag.2024.107383","DOIUrl":null,"url":null,"abstract":"<p><p>Immunization against rabies post-exposure prophylaxis (PEP) requires passive immunization with either monoclonal antibody (mAb) or blood-derived rabies immunoglobin (RIG). Currently, replacing traditional RIG with emerging mAb or mAb combinations is highly recommended due to the limited supply and potential safety risks of RIG. Here, we developed a mAb combination named CRM25 by combining two human mAbs, RM02 and RM05, at a 1:1 mass ratio. RM02 and RM05 were non-competing and non-overlapping mAbs targeting epitopes I and III, respectively. K226 and G229 were found to be the critical amino acid sites for RM02 neutralization, but the mutant I338T displayed decreased susceptibility to RM05 neutralization. Notably, CRM25 was capable of cross-neutralizing rabies virus (RABV) strains containing K226M or I338T mutations. CRM25 additionally showed an inhibitory effect on the infection of all tested common RABVs and non-RABV phylogroup I lyssaviruses. CRM25 not only exhibited neutralizing activity but also exhibited antiviral effects via Fc-mediated effector functions. Importantly, CRM25 was comparable to human RIG in terms of its capacity to protect Syrian golden hamsters from lethal RABV challenges. These findings promote more thorough research on CRM25's antiviral properties in cells and in vivo to enhance its clinical applicability and suggest that it may be a viable candidate medication for rabies PEP.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107383"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Immunization against rabies post-exposure prophylaxis (PEP) requires passive immunization with either monoclonal antibody (mAb) or blood-derived rabies immunoglobin (RIG). Currently, replacing traditional RIG with emerging mAb or mAb combinations is highly recommended due to the limited supply and potential safety risks of RIG. Here, we developed a mAb combination named CRM25 by combining two human mAbs, RM02 and RM05, at a 1:1 mass ratio. RM02 and RM05 were non-competing and non-overlapping mAbs targeting epitopes I and III, respectively. K226 and G229 were found to be the critical amino acid sites for RM02 neutralization, but the mutant I338T displayed decreased susceptibility to RM05 neutralization. Notably, CRM25 was capable of cross-neutralizing rabies virus (RABV) strains containing K226M or I338T mutations. CRM25 additionally showed an inhibitory effect on the infection of all tested common RABVs and non-RABV phylogroup I lyssaviruses. CRM25 not only exhibited neutralizing activity but also exhibited antiviral effects via Fc-mediated effector functions. Importantly, CRM25 was comparable to human RIG in terms of its capacity to protect Syrian golden hamsters from lethal RABV challenges. These findings promote more thorough research on CRM25's antiviral properties in cells and in vivo to enhance its clinical applicability and suggest that it may be a viable candidate medication for rabies PEP.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.