Stimuli-Responsive Peptide/siRNA Nanoparticles as a Radiation Sensitizer for Glioblastoma Treatment by Co-Inhibiting RELA/P65 and EGFR.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2024-11-09 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S483252
Bohong Cen, Jian Zhang, Xinghua Pan, Zhongyuan Xu, Rong Li, Chengcong Chen, Baiyao Wang, Zhiyong Li, Guoqian Zhang, Aimin Ji, Yawei Yuan
{"title":"Stimuli-Responsive Peptide/siRNA Nanoparticles as a Radiation Sensitizer for Glioblastoma Treatment by Co-Inhibiting RELA/P65 and EGFR.","authors":"Bohong Cen, Jian Zhang, Xinghua Pan, Zhongyuan Xu, Rong Li, Chengcong Chen, Baiyao Wang, Zhiyong Li, Guoqian Zhang, Aimin Ji, Yawei Yuan","doi":"10.2147/IJN.S483252","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a novel approach for increasing radiosensitivity in glioblastoma (GBM) by using targeted nanoparticles to deliver siRNA aimed at silencing the EGFR and RELA/P65 genes, which are implicated in radioresistance.</p><p><strong>Patients and methods: </strong>We engineered biodegradable, tumor-targeted, self-assembled, and stimuli-responsive peptide nanoparticles for efficient siRNA delivery. We evaluated the nanoparticles' ability to induce gene silencing and enhance DNA damage under radiation in vitro and in vivo. The nanoparticles were designed to exhibit pH-responsive endosomal escape and αvβ3 integrin targeting, allowing for preferential accumulation at tumor sites and traversal of the blood-brain tumor barrier.</p><p><strong>Results: </strong>The application of these nanoparticles resulted in significant gene silencing, increased apoptosis, and decreased cell viability. The treatment impaired DNA repair mechanisms, thereby enhancing radiosensitivity in GBM cells. In a GBM mouse model, the combination of nanoparticle treatment with radiotherapy notably prolonged survival without apparent toxicity.</p><p><strong>Conclusion: </strong>Our findings suggest that nanoparticle-mediated dual gene silencing can effectively overcome GBM radioresistance. This strategy has the potential to improve clinical outcomes in GBM treatment, proposing a promising therapeutic avenue for this challenging malignancy.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11517-11537"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S483252","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a novel approach for increasing radiosensitivity in glioblastoma (GBM) by using targeted nanoparticles to deliver siRNA aimed at silencing the EGFR and RELA/P65 genes, which are implicated in radioresistance.

Patients and methods: We engineered biodegradable, tumor-targeted, self-assembled, and stimuli-responsive peptide nanoparticles for efficient siRNA delivery. We evaluated the nanoparticles' ability to induce gene silencing and enhance DNA damage under radiation in vitro and in vivo. The nanoparticles were designed to exhibit pH-responsive endosomal escape and αvβ3 integrin targeting, allowing for preferential accumulation at tumor sites and traversal of the blood-brain tumor barrier.

Results: The application of these nanoparticles resulted in significant gene silencing, increased apoptosis, and decreased cell viability. The treatment impaired DNA repair mechanisms, thereby enhancing radiosensitivity in GBM cells. In a GBM mouse model, the combination of nanoparticle treatment with radiotherapy notably prolonged survival without apparent toxicity.

Conclusion: Our findings suggest that nanoparticle-mediated dual gene silencing can effectively overcome GBM radioresistance. This strategy has the potential to improve clinical outcomes in GBM treatment, proposing a promising therapeutic avenue for this challenging malignancy.

通过联合抑制 RELA/P65 和表皮生长因子受体,将刺激反应肽/siRNA 纳米粒子作为治疗胶质母细胞瘤的放射增敏剂。
目的:通过使用靶向纳米颗粒递送旨在沉默表皮生长因子受体(EGFR)和RELA/P65基因的siRNA,开发一种提高胶质母细胞瘤(GBM)放射敏感性的新方法:我们设计了可生物降解、肿瘤靶向、自组装和刺激响应的多肽纳米颗粒,用于高效递送 siRNA。我们评估了纳米颗粒在体外和体内辐射条件下诱导基因沉默和增强DNA损伤的能力。这些纳米颗粒被设计成具有pH响应性内膜逸出和αvβ3整合素靶向性,可优先在肿瘤部位聚集并穿越血脑屏障:结果:这些纳米粒子的应用导致了显著的基因沉默、细胞凋亡增加和细胞活力下降。治疗损害了 DNA 修复机制,从而增强了 GBM 细胞的放射敏感性。在 GBM 小鼠模型中,纳米粒子治疗与放疗的结合明显延长了存活时间,且无明显毒性:我们的研究结果表明,纳米粒子介导的双基因沉默可以有效克服 GBM 的放射抗性。结论:我们的研究结果表明,纳米粒子介导的双基因沉默可以有效克服 GBM 的放射抗性,这种策略有可能改善 GBM 治疗的临床效果,为这种具有挑战性的恶性肿瘤提供了一种前景广阔的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信