{"title":"The brain and hypertension: how the brain regulates and suffers from blood pressure.","authors":"Keisuke Shinohara","doi":"10.1038/s41440-024-01990-3","DOIUrl":null,"url":null,"abstract":"<p><p>The brain plays several roles in the relationship between blood pressure (BP) and the brain: it acts as the control center for BP regulation, a target organ in hypertension, and a crucial component for cognitive function. This mini-review introduces recent findings on \"brain and hypertension\" from Hypertension Research and other journals. Activation of the angiotensin II type 1 receptor (AT1R) signaling pathway in the brain causes sympathoexcitation and hypertension. AT1R-associated protein and β-arrestin promote AT1R internalization and suppress AT1R signaling, with brain-specific roles in BP regulation. The brain receives various inputs from the peripheral system, including the heart and kidneys, and controls central sympathetic outflow. The brain mechanism involved in the enhanced cardiac sympathetic afferent reflex and the beneficial effects of renal denervation have been demonstrated. The brain's vulnerability in hypertension includes stroke, with cerebral small vessel disease (SVD) contributing to stroke risk and brain changes. Sex differences and the age of hypertension onset influence these outcomes. High salt intake exacerbates hypertension and stroke risk, with central mechanisms like sympathoexcitation implicated. Hypertension significantly impacts cognitive function, linking to cerebral SVD and cognitive decline. Orthostatic BP regulation abnormalities also emerge as early risk markers for dementia. Improved BP control in hypertensive individuals can significantly reduce the risk of stroke and cognitive decline, as well as cardiovascular disease, enhancing overall brain health and quality of life. Further understanding the brain's role in BP regulation and the pathogenesis of hypertension will facilitate the development of novel hypertension treatments and prevention strategies.</p>","PeriodicalId":13029,"journal":{"name":"Hypertension Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41440-024-01990-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
The brain plays several roles in the relationship between blood pressure (BP) and the brain: it acts as the control center for BP regulation, a target organ in hypertension, and a crucial component for cognitive function. This mini-review introduces recent findings on "brain and hypertension" from Hypertension Research and other journals. Activation of the angiotensin II type 1 receptor (AT1R) signaling pathway in the brain causes sympathoexcitation and hypertension. AT1R-associated protein and β-arrestin promote AT1R internalization and suppress AT1R signaling, with brain-specific roles in BP regulation. The brain receives various inputs from the peripheral system, including the heart and kidneys, and controls central sympathetic outflow. The brain mechanism involved in the enhanced cardiac sympathetic afferent reflex and the beneficial effects of renal denervation have been demonstrated. The brain's vulnerability in hypertension includes stroke, with cerebral small vessel disease (SVD) contributing to stroke risk and brain changes. Sex differences and the age of hypertension onset influence these outcomes. High salt intake exacerbates hypertension and stroke risk, with central mechanisms like sympathoexcitation implicated. Hypertension significantly impacts cognitive function, linking to cerebral SVD and cognitive decline. Orthostatic BP regulation abnormalities also emerge as early risk markers for dementia. Improved BP control in hypertensive individuals can significantly reduce the risk of stroke and cognitive decline, as well as cardiovascular disease, enhancing overall brain health and quality of life. Further understanding the brain's role in BP regulation and the pathogenesis of hypertension will facilitate the development of novel hypertension treatments and prevention strategies.
期刊介绍:
Hypertension Research is the official publication of the Japanese Society of Hypertension. The journal publishes papers reporting original clinical and experimental research that contribute to the advancement of knowledge in the field of hypertension and related cardiovascular diseases. The journal publishes Review Articles, Articles, Correspondence and Comments.