Suneth Agampodi, Birkneh Tilahun Tadesse, Sushant Sahastrabuddhe, Jean-Louis Excler, Jerome Han Kim
{"title":"Biases in COVID-19 vaccine effectiveness studies using cohort design.","authors":"Suneth Agampodi, Birkneh Tilahun Tadesse, Sushant Sahastrabuddhe, Jean-Louis Excler, Jerome Han Kim","doi":"10.3389/fmed.2024.1474045","DOIUrl":null,"url":null,"abstract":"<p><p>Observational studies on COVID-19 vaccine effectiveness (VE) have provided critical real-world data, informing public health policy globally. These studies, primarily using pre-existing data sources, have been indispensable in assessing VE across diverse populations and developing sustainable vaccination strategies. Cohort design is frequently employed in VE research. The rapid implementation of vaccination campaigns during the COVID-19 pandemic introduced differential vaccination influenced by sociodemographic disparities, public policies, perceived risks, health-promoting behaviors, and health status, potentially resulting in biases such as healthy user bias, healthy vaccinee effect, frailty bias, differential depletion of susceptibility bias, and confounding by indication. The overwhelming burden on healthcare systems has escalated the risk of data inaccuracies, leading to outcome misclassifications. Additionally, the extensive array of diagnostic tests used during the pandemic has also contributed to misclassification biases. The urgency to publish quickly may have further influenced these biases or led to their oversight, affecting the validity of the findings. These biases in studies vary considerably depending on the setting, data sources, and analytical methods and are likely more pronounced in low- and middle-income country (LMIC) settings due to inadequate data infrastructure. Addressing and mitigating these biases is essential for accurate VE estimates, guiding public health strategies, and sustaining public trust in vaccination programs. Transparent communication about these biases and rigorous improvement in the design of future observational studies are essential.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"11 ","pages":"1474045"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2024.1474045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Observational studies on COVID-19 vaccine effectiveness (VE) have provided critical real-world data, informing public health policy globally. These studies, primarily using pre-existing data sources, have been indispensable in assessing VE across diverse populations and developing sustainable vaccination strategies. Cohort design is frequently employed in VE research. The rapid implementation of vaccination campaigns during the COVID-19 pandemic introduced differential vaccination influenced by sociodemographic disparities, public policies, perceived risks, health-promoting behaviors, and health status, potentially resulting in biases such as healthy user bias, healthy vaccinee effect, frailty bias, differential depletion of susceptibility bias, and confounding by indication. The overwhelming burden on healthcare systems has escalated the risk of data inaccuracies, leading to outcome misclassifications. Additionally, the extensive array of diagnostic tests used during the pandemic has also contributed to misclassification biases. The urgency to publish quickly may have further influenced these biases or led to their oversight, affecting the validity of the findings. These biases in studies vary considerably depending on the setting, data sources, and analytical methods and are likely more pronounced in low- and middle-income country (LMIC) settings due to inadequate data infrastructure. Addressing and mitigating these biases is essential for accurate VE estimates, guiding public health strategies, and sustaining public trust in vaccination programs. Transparent communication about these biases and rigorous improvement in the design of future observational studies are essential.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world