{"title":"Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury.","authors":"Yue Zhang, Jing Li, Jiamei Pan, Shengli Deng","doi":"10.3389/fphys.2024.1473501","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1473501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.