Luiz Schweitzer, Janosch Schoon, Niklas Bläß, Katrin Huesker, Janine V Neufend, Nikolai Siemens, Sander Bekeschus, Rabea Schlüter, Peter Schneider, Eckart Uhlmann, Georgi Wassilew, Frank Schulze
{"title":"Ultraviolet laser induced periodic surface structures positively influence osteogenic activity on titanium alloys.","authors":"Luiz Schweitzer, Janosch Schoon, Niklas Bläß, Katrin Huesker, Janine V Neufend, Nikolai Siemens, Sander Bekeschus, Rabea Schlüter, Peter Schneider, Eckart Uhlmann, Georgi Wassilew, Frank Schulze","doi":"10.3389/fbioe.2024.1462232","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials. In this preclinical <i>in vitro</i> study, laser pulses with a wavelength in the ultraviolet (UV) spectrum were applied for the generation of LIPSS to positively influence formation of extracellular matrix by primary human Osteoblasts (hOBs) and to reduce microbial biofilm formation <i>in vitro</i>.</p><p><strong>Methods: </strong>Laser machining was employed for generating UV-LIPSS on sample disks made of Ti6Al4V and Ti6Al7Nb alloys. Sample disks with polished surfaces were used as controls. Scanning electron microscopy was used for visualization of surface topography and adherent cells. Metal ion release and cellular metal levels were investigated by inductively coupled plasma mass spectrometry. Cell culture of hOBs on sample disks with and without UV-LIPSS surface treatments was performed. Cells were investigated for their viability, proliferation, osteogenic function and cytokine release. Biofilm formation was facilitated by seeding <i>Staphylococcus aureus</i> on sample disks and quantified by wheat germ agglutinin (WGA) staining.</p><p><strong>Results: </strong>UV-LIPSS modification results in topographies with a periodicity of 223 nm ≤ λ ≤ 278 nm. The release of metal ions was found increased for UV-LIPSS on Ti6Al4V and decreased for UV-LIPSS on Ti6Al7Nb, while cellular metal levels remain unaffected. Cellular adherence was decreased for hOBs on UV-LIPSS Ti6Al4V when compared to controls while proliferation rate was unaffected. Metabolic activity was lower on UV-LIPSS Ti6Al7Nb when compared to the control. Alkaline phosphatase activity was upregulated for hOBs grown on UV-LIPSS on both alloys. Less pro-inflammatory cytokines were released for cells grown on UV-LIPSS Ti6Al7Nb when compared to polished surfaces. WGA signals were significantly lower on UV-LIPSS Ti6Al7Nb indicating reduced formation of a <i>S. aureus</i> biofilm.</p><p><strong>Conclusion: </strong>Our results suggest that UV-LIPSS texturing of Ti6Al7Nb positively influence bone forming function and cytokine secretion profile of hOBs <i>in vitro</i>. In addition, our results indicate diminished biofilm formation on UV-LIPSS treated Ti6Al7Nb surfaces. These effects might prove beneficial in the context of long-term arthroplasty outcomes.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1462232"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1462232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objective: Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials. In this preclinical in vitro study, laser pulses with a wavelength in the ultraviolet (UV) spectrum were applied for the generation of LIPSS to positively influence formation of extracellular matrix by primary human Osteoblasts (hOBs) and to reduce microbial biofilm formation in vitro.
Methods: Laser machining was employed for generating UV-LIPSS on sample disks made of Ti6Al4V and Ti6Al7Nb alloys. Sample disks with polished surfaces were used as controls. Scanning electron microscopy was used for visualization of surface topography and adherent cells. Metal ion release and cellular metal levels were investigated by inductively coupled plasma mass spectrometry. Cell culture of hOBs on sample disks with and without UV-LIPSS surface treatments was performed. Cells were investigated for their viability, proliferation, osteogenic function and cytokine release. Biofilm formation was facilitated by seeding Staphylococcus aureus on sample disks and quantified by wheat germ agglutinin (WGA) staining.
Results: UV-LIPSS modification results in topographies with a periodicity of 223 nm ≤ λ ≤ 278 nm. The release of metal ions was found increased for UV-LIPSS on Ti6Al4V and decreased for UV-LIPSS on Ti6Al7Nb, while cellular metal levels remain unaffected. Cellular adherence was decreased for hOBs on UV-LIPSS Ti6Al4V when compared to controls while proliferation rate was unaffected. Metabolic activity was lower on UV-LIPSS Ti6Al7Nb when compared to the control. Alkaline phosphatase activity was upregulated for hOBs grown on UV-LIPSS on both alloys. Less pro-inflammatory cytokines were released for cells grown on UV-LIPSS Ti6Al7Nb when compared to polished surfaces. WGA signals were significantly lower on UV-LIPSS Ti6Al7Nb indicating reduced formation of a S. aureus biofilm.
Conclusion: Our results suggest that UV-LIPSS texturing of Ti6Al7Nb positively influence bone forming function and cytokine secretion profile of hOBs in vitro. In addition, our results indicate diminished biofilm formation on UV-LIPSS treated Ti6Al7Nb surfaces. These effects might prove beneficial in the context of long-term arthroplasty outcomes.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.