Microfluidics for studying the deep underground biosphere: from applications to fundamentals.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Sandy Morais, Emeline Vidal, Anaïs Cario, Samuel Marre, Anthony Ranchou-Peyruse
{"title":"Microfluidics for studying the deep underground biosphere: from applications to fundamentals.","authors":"Sandy Morais, Emeline Vidal, Anaïs Cario, Samuel Marre, Anthony Ranchou-Peyruse","doi":"10.1093/femsec/fiae151","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating pore-scale analysis. Finally, the current challenges and opportunities to expand the use of microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep underground conditions are discussed.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae151","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating pore-scale analysis. Finally, the current challenges and opportunities to expand the use of microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep underground conditions are discussed.

研究地下深层生物圈的微流体技术:从应用到基础。
本综述选取了一些实例,从实用和基础两个角度说明如何利用微流体方法研究深层地质环境中的微生物生命。从地下深层生物圈的定义和这些研究采用的常规实验技术开始,随后讨论了利用微流体系统在微观尺度(高压、高温、低容积)上获取地质环境中深层生命的关键参数。微流控技术可以在芯片上模拟各种环境条件,从而快速、全面地研究地下生态系统中的微生物行为和相互作用,例如模拟多孔系统、微生物/微生物/矿物之间的相互作用以及梯度培养。透明微反应器可对微生物活动进行实时、非侵入式分析(显微镜、拉曼光谱、傅立叶变换红外显微光谱等),提供对生物地球化学过程的详细了解,并促进孔隙尺度分析。最后,讨论了在地下深层条件下扩大使用微流控方法实时研究和监测深层生物圈的当前挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信