{"title":"TRPC3: how current mechanistic understanding provides a basis for therapeutic targeting.","authors":"Klaus Groschner","doi":"10.1080/14728222.2024.2430520","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intensive and detailed investigations of the molecular function and cellular role of mammalian transient receptor potential canonical (TRPC) channels started back in the early 90<sup>th</sup> of the past century. Initial TRPC research was fueled by high hopes to resolve fundamental questions of cellular Ca<sup>2+</sup> signaling. To date, we have learned important lessons in TRPC channel biology and biophysics, while little progress has been made in terms of therapeutic concepts.</p><p><strong>Areas covered: </strong>This is a critical account of recent progress in building a solid mechanistic basis for therapeutic interventions utilizing TRPC3 as a target. I focus on hurdles and key issues to be resolved, thereby drafting a list of essential scientific 'to-dos' on the way toward drugging of TRPC3.</p><p><strong>Expert opinion: </strong>Recent advances in the molecular physiology of TRPC3 include unveiling its lipid sensing machinery and the channels´ ability to serve spatiotemporally diverse Ca<sup>2+</sup> signaling in a cell type- and context-dependent manner. The ongoing development of technology for high-precision manipulation of the channel opens up a view on novel therapeutic strategies. It is now to unravel the complex role of TRPC3 in human physiopathology, to pinpoint the channels´ therapeutic relevance, and to further refine technologies for targeted interventions.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"953-961"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2024.2430520","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Intensive and detailed investigations of the molecular function and cellular role of mammalian transient receptor potential canonical (TRPC) channels started back in the early 90th of the past century. Initial TRPC research was fueled by high hopes to resolve fundamental questions of cellular Ca2+ signaling. To date, we have learned important lessons in TRPC channel biology and biophysics, while little progress has been made in terms of therapeutic concepts.
Areas covered: This is a critical account of recent progress in building a solid mechanistic basis for therapeutic interventions utilizing TRPC3 as a target. I focus on hurdles and key issues to be resolved, thereby drafting a list of essential scientific 'to-dos' on the way toward drugging of TRPC3.
Expert opinion: Recent advances in the molecular physiology of TRPC3 include unveiling its lipid sensing machinery and the channels´ ability to serve spatiotemporally diverse Ca2+ signaling in a cell type- and context-dependent manner. The ongoing development of technology for high-precision manipulation of the channel opens up a view on novel therapeutic strategies. It is now to unravel the complex role of TRPC3 in human physiopathology, to pinpoint the channels´ therapeutic relevance, and to further refine technologies for targeted interventions.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.