UV-C-Activated Riboflavin Crosslinked Gelatin Film with Bioactive Nanoemulsion for Enhanced Preservation of Fresh Beef in Modified Atmosphere Packaging.
Jumana Mahmud, Peter Muranyi, Stephane Salmieri, Shiv Shankar, Monique Lacroix
{"title":"UV-C-Activated Riboflavin Crosslinked Gelatin Film with Bioactive Nanoemulsion for Enhanced Preservation of Fresh Beef in Modified Atmosphere Packaging.","authors":"Jumana Mahmud, Peter Muranyi, Stephane Salmieri, Shiv Shankar, Monique Lacroix","doi":"10.3390/foods13213504","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (<i>w</i>/<i>w</i>) for crosslinking gelatin under UV-C exposure for 4 to 22 min. Physicochemical analyses revealed enhanced tensile strength, reduced water vapor permeability, and lower water solubility in films crosslinked for up to 13 min. FTIR analysis demonstrated significant molecular changes, confirming the formation of crosslinking connections in gelatin-riboflavin films. Antimicrobial nanoemulsion (NE) (0.5, 0.75, 1% <i>v</i>/<i>v</i>) was incorporated into crosslinked films and applied to fresh beef. The 1% NE film exhibited the strongest antimicrobial effect, extending shelf-life by 20 days. In vitro release study confirmed Fickian diffusion behavior in the 1% NE film. This study also investigated the synergy between 1% NE film and three different types of modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of beef for 26 days. The best results were achieved with 1% NE film under MAP1 and MAP2, which preserved meat redness and prevented lipid oxidation, extending the shelf-life up to 26 days. Therefore, UV-C irradiation-induced crosslinked bioactive film combined with high-oxygen MAP offers a promising solution for prolonging the shelf-life of beef.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13213504","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores a new eco-friendly approach for developing bioactive gelatin films using UV-C irradiation-induced photo-crosslinking. Riboflavin, a food-grade photoinitiator, was selected at an optimal concentration of 1.25% (w/w) for crosslinking gelatin under UV-C exposure for 4 to 22 min. Physicochemical analyses revealed enhanced tensile strength, reduced water vapor permeability, and lower water solubility in films crosslinked for up to 13 min. FTIR analysis demonstrated significant molecular changes, confirming the formation of crosslinking connections in gelatin-riboflavin films. Antimicrobial nanoemulsion (NE) (0.5, 0.75, 1% v/v) was incorporated into crosslinked films and applied to fresh beef. The 1% NE film exhibited the strongest antimicrobial effect, extending shelf-life by 20 days. In vitro release study confirmed Fickian diffusion behavior in the 1% NE film. This study also investigated the synergy between 1% NE film and three different types of modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of beef for 26 days. The best results were achieved with 1% NE film under MAP1 and MAP2, which preserved meat redness and prevented lipid oxidation, extending the shelf-life up to 26 days. Therefore, UV-C irradiation-induced crosslinked bioactive film combined with high-oxygen MAP offers a promising solution for prolonging the shelf-life of beef.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds