A guide for blood-brain barrier models.

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Yomna Soliman, Jana Al-Khodor, Gülnaz Yildirim Köken, Nur Mustafaoglu
{"title":"A guide for blood-brain barrier models.","authors":"Yomna Soliman, Jana Al-Khodor, Gülnaz Yildirim Köken, Nur Mustafaoglu","doi":"10.1002/1873-3468.15053","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.

血脑屏障模型指南
血脑屏障(BBB)是维持大脑平衡的重要动态界面,了解大脑相关疾病的复杂机制取决于揭示血脑屏障的关键作用。这篇综述全面分析了血脑屏障的生理学,深入研究了其细胞和分子成分,同时探讨了各种体内和体外血脑屏障模型。值得注意的是,本文明确讨论了三维细胞培养技术的最新进展,因为这些技术能够在流动条件下复制生理相关环境,从而大大提高了 BBB 模型的保真度。论文特别关注体外 BBB 模型的细胞方面,同时还讨论了干细胞技术的进展,为 BBB 建模提供了生成稳健细胞系统的宝贵见解。本综述细致研究了用于 BBB 建模的各种细胞类型(取决于它们的来源),仔细探讨了它们各自的衍生方案和影响。通过综合各种方法,本综述揭示了如何改进 BBB 模型以捕捉生理条件,从而帮助理解 BBB 在健康和疾病条件下的相互作用,促进临床开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信