Enhanced activity of mixed-culture electroactive biofilms and sulfamethoxazole removal efficiency by adding N-acyl-homoserine lactones in bio-electrochemical system.
Saiyun He, Pan Yu, Yi Shao, Xintong Gao, Takashi Sakamaki, Xianning Li
{"title":"Enhanced activity of mixed-culture electroactive biofilms and sulfamethoxazole removal efficiency by adding N-acyl-homoserine lactones in bio-electrochemical system.","authors":"Saiyun He, Pan Yu, Yi Shao, Xintong Gao, Takashi Sakamaki, Xianning Li","doi":"10.1080/09593330.2024.2428441","DOIUrl":null,"url":null,"abstract":"<p><p>The addition of exogenous quorum sensing signaling molecules significantly enhanced the degradation efficiency of antibiotics, such as chloramphenicol in bio-electrochemical systems (BESs). However, the effects and mechanisms by which AHLs addition in BES facilitated the removal of sulfamethoxazole (SMX) remained inadequately explored. This study systematically compared the electrochemical performance and SMX removal efficiency in BES under two conditions: with and without the addition of N-acyl-homoserine lactones (AHLs) signaling molecules. In comparison to the control group, the AHL-treated group exhibited an increase in maximum output voltage from 340 to 489.67 mV, alongside a notable enhancement in SMX removal efficiency over 120 h ranging from 14.65% to 15.76%. Analyses of the live and dead cells and extracellular polymeric substances (EPS) composition revealed that following AHLs addition, both the ratio of live to dead cells and protein content within EPS increased by 12.66% and 74.37%, respectively. Furthermore, microbial community structure analysis indicated that after AHLs supplementation, there was a marked increase in the abundance of electroactive microorganisms as well as antibiotic-degrading and nitrogen-removing bacteria. Notably, <i>Klebsiella</i> - characterised by its electroactivity along with antibiotic degradation and nitrogen removal capabilities - exhibited a relative abundance reaching 56.84% in AHL, reflecting an increase of 28.31% compared to Blank; additionally, electroactive bacteria <i>Dysgonomonas</i> showed a relative abundance rise of 2.49%. Collectively, these findings suggested that enhancements in SMX removal efficiency upon AHLs addition were primarily driven by improvements in electrochemical performance coupled with alterations in microbial community structure.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2428441","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The addition of exogenous quorum sensing signaling molecules significantly enhanced the degradation efficiency of antibiotics, such as chloramphenicol in bio-electrochemical systems (BESs). However, the effects and mechanisms by which AHLs addition in BES facilitated the removal of sulfamethoxazole (SMX) remained inadequately explored. This study systematically compared the electrochemical performance and SMX removal efficiency in BES under two conditions: with and without the addition of N-acyl-homoserine lactones (AHLs) signaling molecules. In comparison to the control group, the AHL-treated group exhibited an increase in maximum output voltage from 340 to 489.67 mV, alongside a notable enhancement in SMX removal efficiency over 120 h ranging from 14.65% to 15.76%. Analyses of the live and dead cells and extracellular polymeric substances (EPS) composition revealed that following AHLs addition, both the ratio of live to dead cells and protein content within EPS increased by 12.66% and 74.37%, respectively. Furthermore, microbial community structure analysis indicated that after AHLs supplementation, there was a marked increase in the abundance of electroactive microorganisms as well as antibiotic-degrading and nitrogen-removing bacteria. Notably, Klebsiella - characterised by its electroactivity along with antibiotic degradation and nitrogen removal capabilities - exhibited a relative abundance reaching 56.84% in AHL, reflecting an increase of 28.31% compared to Blank; additionally, electroactive bacteria Dysgonomonas showed a relative abundance rise of 2.49%. Collectively, these findings suggested that enhancements in SMX removal efficiency upon AHLs addition were primarily driven by improvements in electrochemical performance coupled with alterations in microbial community structure.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current