Kolby J Jardine, Luiza Gallo, Melissa Roth, Shivani Upadhyaya, Trent Northen, Suzanne Kosina, Guillaume Tcherkez, Aymerick Eudes, Tomas Domigues, Markus Greule, Suman Som, Frank Keppler
{"title":"The 'photosynthetic C<sub>1</sub> pathway' links carbon assimilation and growth in California poplar.","authors":"Kolby J Jardine, Luiza Gallo, Melissa Roth, Shivani Upadhyaya, Trent Northen, Suzanne Kosina, Guillaume Tcherkez, Aymerick Eudes, Tomas Domigues, Markus Greule, Suman Som, Frank Keppler","doi":"10.1038/s42003-024-07142-0","DOIUrl":null,"url":null,"abstract":"<p><p>Although primarily studied in relation to photorespiration, serine metabolism in chloroplasts may play a key role in plant CO<sub>2</sub> fertilization responses by linking CO<sub>2</sub> assimilation with growth. Here, we show that the phosphorylated serine pathway is part of a 'photosynthetic C<sub>1</sub> pathway' and demonstrate its high activity in foliage of a C<sub>3</sub> tree where it rapidly integrates photosynthesis and C<sub>1</sub> metabolism contributing to new biomass via methyl transfer reactions, imparting a large natural <sup>13</sup>C-depleted signature. Using <sup>13</sup>CO<sub>2</sub>-labelling, we show that leaf serine, the S-methyl group of leaf methionine, pectin methyl esters, and the associated methanol released during cell wall expansion during growth, are directly produced from photosynthetically-linked C<sub>1</sub> metabolism, within minutes of light exposure. We speculate that the photosynthetic C<sub>1</sub> pathway is highly conserved across the photosynthetic tree of life, is responsible for synthesis of the greenhouse gas methane, and may have evolved with oxygenic photosynthesis by providing a mechanism of directly linking carbon and ammonia assimilation with growth. Although the rise in atmospheric CO<sub>2</sub> inhibits major metabolic pathways like photorespiration, our results suggest that the photosynthetic C<sub>1</sub> pathway may accelerate and represents a missing link between enhanced photosynthesis and plant growth rates during CO<sub>2</sub> fertilization under a changing climate.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1469"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07142-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although primarily studied in relation to photorespiration, serine metabolism in chloroplasts may play a key role in plant CO2 fertilization responses by linking CO2 assimilation with growth. Here, we show that the phosphorylated serine pathway is part of a 'photosynthetic C1 pathway' and demonstrate its high activity in foliage of a C3 tree where it rapidly integrates photosynthesis and C1 metabolism contributing to new biomass via methyl transfer reactions, imparting a large natural 13C-depleted signature. Using 13CO2-labelling, we show that leaf serine, the S-methyl group of leaf methionine, pectin methyl esters, and the associated methanol released during cell wall expansion during growth, are directly produced from photosynthetically-linked C1 metabolism, within minutes of light exposure. We speculate that the photosynthetic C1 pathway is highly conserved across the photosynthetic tree of life, is responsible for synthesis of the greenhouse gas methane, and may have evolved with oxygenic photosynthesis by providing a mechanism of directly linking carbon and ammonia assimilation with growth. Although the rise in atmospheric CO2 inhibits major metabolic pathways like photorespiration, our results suggest that the photosynthetic C1 pathway may accelerate and represents a missing link between enhanced photosynthesis and plant growth rates during CO2 fertilization under a changing climate.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.