ByungSun Min, Trong Trieu Tran, Minju Gal, Manh Tuan Ha, Seungeun Hyun, Okwha Kim, Jeong Ah Kim, Jeong-Hyung Lee
{"title":"Triterpenoids from Potentilla chinensis inhibit RANKL-induced osteoclastogenesis in vitro and lipopolysaccharide-induced osteolytic bone loss in vivo.","authors":"ByungSun Min, Trong Trieu Tran, Minju Gal, Manh Tuan Ha, Seungeun Hyun, Okwha Kim, Jeong Ah Kim, Jeong-Hyung Lee","doi":"10.1002/cbdv.202402011","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a phytochemical investigation on the methanol extract of Potentilla chinensis led to the isolation of eleven triterpenoids including ursolic acid (1), pomolic acid (2), tormentic acid (3), 2-epi-corosolic acid (4), 3-epi-corosolic acid (ECA, 5), 3β-hydroxyurs-11-en-13β(28)-olide (6), euscaphic acid (7), 2-epi-tormentic acid (8), corosolic acid (9), uvaol (10), and 3-O-acetylpomolic acid (11). Among them, ECA (5) showed potential anti-osteoclastogenic activity. To the best of our knowledge, this represents the first isolation of ECA (5) from P. chinensis as well as the first investigation of its effects on osteoclast formation. Further study revealed that ECA inhibited RANKL-induced mature osteoclast formation in vitro without compromising cell viability. Mechanistically, ECA attenuated RANKL-induced mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation, leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. Moreover, ECA protected against LPS-induced inflammatory bone loss and osteoclast formation in a mouse model. However, ECA did not inhibit LPS-induced inflammatory responses in macrophages. Our findings suggest that ECA mitigates LPS-induced inflammatory bone loss in mice by inhibiting RANKL-induced activation of key osteoclastogenic transcription factors, including c-Fos and NFATc1, and may be a potential natural triterpenoid for preventing or treating osteolytic diseases.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202402011"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a phytochemical investigation on the methanol extract of Potentilla chinensis led to the isolation of eleven triterpenoids including ursolic acid (1), pomolic acid (2), tormentic acid (3), 2-epi-corosolic acid (4), 3-epi-corosolic acid (ECA, 5), 3β-hydroxyurs-11-en-13β(28)-olide (6), euscaphic acid (7), 2-epi-tormentic acid (8), corosolic acid (9), uvaol (10), and 3-O-acetylpomolic acid (11). Among them, ECA (5) showed potential anti-osteoclastogenic activity. To the best of our knowledge, this represents the first isolation of ECA (5) from P. chinensis as well as the first investigation of its effects on osteoclast formation. Further study revealed that ECA inhibited RANKL-induced mature osteoclast formation in vitro without compromising cell viability. Mechanistically, ECA attenuated RANKL-induced mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation, leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. Moreover, ECA protected against LPS-induced inflammatory bone loss and osteoclast formation in a mouse model. However, ECA did not inhibit LPS-induced inflammatory responses in macrophages. Our findings suggest that ECA mitigates LPS-induced inflammatory bone loss in mice by inhibiting RANKL-induced activation of key osteoclastogenic transcription factors, including c-Fos and NFATc1, and may be a potential natural triterpenoid for preventing or treating osteolytic diseases.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.