Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells.

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Jonathan Nissenbaum, Emanuel Segal, Hagit Philip, Rivki Cashman, Tamar Golan-Lev, Benjamin E Reubinoff, Adi Turjeman, Ofra Yanuka, Elyad Lezmi, Oded Kopper, Nissim Benvenisty
{"title":"Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells.","authors":"Jonathan Nissenbaum, Emanuel Segal, Hagit Philip, Rivki Cashman, Tamar Golan-Lev, Benjamin E Reubinoff, Adi Turjeman, Ofra Yanuka, Elyad Lezmi, Oded Kopper, Nissim Benvenisty","doi":"10.1111/cpr.13771","DOIUrl":null,"url":null,"abstract":"<p><p>Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13771"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13771","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.

利用单倍体人类胚胎干细胞的全基因组筛选预测肿瘤对紫杉醇和卡铂的耐药性。
紫杉类和铂类分子,特别是紫杉醇和卡铂,是广泛使用的抗癌药物,可诱导细胞死亡,是各种癌症的一线化疗药物。尽管这两种药物能有效抑制癌细胞增殖,但许多肿瘤对紫杉醇和卡铂具有先天抗药性,导致治疗效率低下和生存率低。单倍体人类胚胎干细胞(hESCs)是一种新颖而强大的基因筛选平台。为了全面了解影响或调控紫杉醇和卡铂耐药性的基因,研究人员在单倍体人胚胎干细胞中进行了全基因组功能缺失筛选。紫杉醇和卡铂筛查都筛选出了与耐药性预测相关的可信基因列表和通路。研究证明了所选基因突变对耐药性的影响。在此基础上,开发了一种可预测紫杉醇或卡铂耐药性的算法。将该算法应用于患者肿瘤的DNA突变图谱,可以将敏感患者与耐药患者区分开来,从而提供了一种预测工具。由于抗癌药物库能在紫杉醇或卡铂出现耐药性时提供替代药物,因此早期预测能提供显著优势,并能改善治疗。该算法有助于满足这一尚未满足的需求,帮助预测患者是否会对治疗产生反应,并可立即应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信