Enhancing Surgical Guidance: Deep Learning-Based Liver Vessel Segmentation in Real-Time Ultrasound Video Frames.

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancers Pub Date : 2024-10-30 DOI:10.3390/cancers16213674
Muhammad Awais, Mais Al Taie, Caleb S O'Connor, Austin H Castelo, Belkacem Acidi, Hop S Tran Cao, Kristy K Brock
{"title":"Enhancing Surgical Guidance: Deep Learning-Based Liver Vessel Segmentation in Real-Time Ultrasound Video Frames.","authors":"Muhammad Awais, Mais Al Taie, Caleb S O'Connor, Austin H Castelo, Belkacem Acidi, Hop S Tran Cao, Kristy K Brock","doi":"10.3390/cancers16213674","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>In the field of surgical medicine, the planning and execution of liver resection procedures present formidable challenges, primarily attributable to the intricate and highly individualized nature of liver vascular anatomy. In the current surgical milieu, intraoperative ultrasonography (IOUS) has become indispensable; however, traditional 2D ultrasound imaging's interpretability is hindered by noise and speckle artifacts. Accurate identification of critical structures for preservation during hepatectomy requires advanced surgical skills.</p><p><strong>Methods: </strong>An AI-based model that can help detect and recognize vessels including the inferior vena cava (IVC); the right (RHV), middle (MHV), and left (LVH) hepatic veins; the portal vein (PV) and its major first and second order branches the left portal vein (LPV), right portal vein (RPV), and right anterior (RAPV) and posterior (RPPV) portal veins, for real-time IOUS navigation can be of immense value in liver surgery. This research aims to advance the capabilities of IOUS-guided interventions by applying an innovative AI-based approach named the \"2D-weigthed U-Net model\" for the segmentation of multiple blood vessels in real-time IOUS video frames.</p><p><strong>Results: </strong>Our proposed deep learning (DL) model achieved a mean Dice score of 0.92 for IVC, 0.90 for RHV, 0.89 for MHV, 0.86 for LHV, 0.95 for PV, 0.93 for LPV, 0.84 for RPV, 0.85 for RAPV, and 0.96 for RPPV.</p><p><strong>Conclusion: </strong>In the future, this research will be extended for real-time multi-label segmentation of extended vasculature in the liver, followed by the translation of our model into the surgical suite.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 21","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16213674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: In the field of surgical medicine, the planning and execution of liver resection procedures present formidable challenges, primarily attributable to the intricate and highly individualized nature of liver vascular anatomy. In the current surgical milieu, intraoperative ultrasonography (IOUS) has become indispensable; however, traditional 2D ultrasound imaging's interpretability is hindered by noise and speckle artifacts. Accurate identification of critical structures for preservation during hepatectomy requires advanced surgical skills.

Methods: An AI-based model that can help detect and recognize vessels including the inferior vena cava (IVC); the right (RHV), middle (MHV), and left (LVH) hepatic veins; the portal vein (PV) and its major first and second order branches the left portal vein (LPV), right portal vein (RPV), and right anterior (RAPV) and posterior (RPPV) portal veins, for real-time IOUS navigation can be of immense value in liver surgery. This research aims to advance the capabilities of IOUS-guided interventions by applying an innovative AI-based approach named the "2D-weigthed U-Net model" for the segmentation of multiple blood vessels in real-time IOUS video frames.

Results: Our proposed deep learning (DL) model achieved a mean Dice score of 0.92 for IVC, 0.90 for RHV, 0.89 for MHV, 0.86 for LHV, 0.95 for PV, 0.93 for LPV, 0.84 for RPV, 0.85 for RAPV, and 0.96 for RPPV.

Conclusion: In the future, this research will be extended for real-time multi-label segmentation of extended vasculature in the liver, followed by the translation of our model into the surgical suite.

加强手术指导:基于深度学习的实时超声视频帧肝脏血管分割。
背景/目的:在外科医学领域,肝脏切除手术的计划和执行是一项艰巨的挑战,这主要归因于肝脏血管解剖的复杂性和高度个性化。在目前的手术环境中,术中超声成像(IOUS)已变得不可或缺;然而,传统的二维超声成像因噪声和斑点伪影而影响了其可解释性。在肝切除术中准确识别需要保留的关键结构需要先进的外科技能:方法:基于人工智能的模型可以帮助检测和识别血管,包括下腔静脉(IVC);肝右静脉(RHV)、肝中静脉(MHV)和肝左静脉(LVH);门静脉(PV)及其主要的一阶和二阶分支左门静脉(LPV)、右门静脉(RPV)、右前门静脉(RAPV)和右后门静脉(RPPV),用于实时 IOUS 导航,在肝脏手术中具有巨大价值。本研究旨在通过应用基于人工智能的创新方法 "二维权重U网模型 "来分割实时IOUS视频帧中的多条血管,从而提高IOUS引导干预的能力:我们提出的深度学习(DL)模型在 IVC、RHV、MHV、LHV、PV、LPV、RPV、RAPV 和 RPPV 的平均 Dice 分数分别为 0.92、0.90、0.89、0.86、0.95、0.93、0.84、0.85 和 0.96:未来,这项研究将扩展到对肝脏中的扩展血管进行实时多标签分割,然后将我们的模型应用到外科手术中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信