{"title":"Involvement of PDGFR-integrin interactions in the regulation of anoikis resistance in glioblastoma progression","authors":"Pampa Pain, Ashutosh Tripathi, Prakash P. Pillai","doi":"10.1002/cbin.12257","DOIUrl":null,"url":null,"abstract":"<p>The interactions between platelet-derived growth factor/PDGF receptor and integrin signaling are crucial for cells to respond to extracellular stimuli. Integrin interactions with PDGFR within the lipid rafts activate downstream cellular signaling pathways that regulate cell proliferation, cell migration, cell differentiation, and cell death processes. The mechanisms underlying PDGFR activation mediated receptor internalization, interactions with other cell-surface receptors, particularly extracellular matrix receptors, integrins, and how these cellular mechanisms switch on anchorage-independent cell survival, leading to anoikis resistance are discussed. The role of regulatory molecules such as noncoding RNAs, that can modulate several molecular and cellular processes, including autophagy, in the acquisition of anoikis resistance is also discussed. Overall, the review provides a new perspective on a complex interplay of regulatory cellular machineries involving autophagy, noncoding RNAs and cellular mechanisms of PDGFR activation, PDGFR-integrin interactions, and involvement of lipids rafts in the acquisition of anoikis resistance that regulates glioblastoma progression along with potential future strategies to develop novel therapeutics for glioblastoma multiforme.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"3-15"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12257","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interactions between platelet-derived growth factor/PDGF receptor and integrin signaling are crucial for cells to respond to extracellular stimuli. Integrin interactions with PDGFR within the lipid rafts activate downstream cellular signaling pathways that regulate cell proliferation, cell migration, cell differentiation, and cell death processes. The mechanisms underlying PDGFR activation mediated receptor internalization, interactions with other cell-surface receptors, particularly extracellular matrix receptors, integrins, and how these cellular mechanisms switch on anchorage-independent cell survival, leading to anoikis resistance are discussed. The role of regulatory molecules such as noncoding RNAs, that can modulate several molecular and cellular processes, including autophagy, in the acquisition of anoikis resistance is also discussed. Overall, the review provides a new perspective on a complex interplay of regulatory cellular machineries involving autophagy, noncoding RNAs and cellular mechanisms of PDGFR activation, PDGFR-integrin interactions, and involvement of lipids rafts in the acquisition of anoikis resistance that regulates glioblastoma progression along with potential future strategies to develop novel therapeutics for glioblastoma multiforme.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.