Lei Pan, Mingqiang Fu, Xiang-Lin Tang, Yunlong Ling, Yangang Su, Junbo Ge
{"title":"Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation.","authors":"Lei Pan, Mingqiang Fu, Xiang-Lin Tang, Yunlong Ling, Yangang Su, Junbo Ge","doi":"10.1007/s10557-024-07635-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Macrophage-mediated inflammation plays a crucial role in the pathophysiological process of myocardial ischemia/reperfusion (I/R) injury. Recent studies have highlighted the importance of mitochondrial function and inflammasome activation in the inflammatory process. Kirenol, a well-known natural compound, has been shown to regulate inflammation in various diseases. This study investigated whether Kirenol could exert anti-inflammatory effects on macrophages during myocardial I/R injury.</p><p><strong>Methods: </strong>Mouse myocardial I/R models were established by 45 min of ischemia followed by 24 h of reperfusion. Saline or Kirenol treatment was administered. In vivo assessments included the evaluation of cardiac function, infarcted area, and immune cell infiltration. Subsequently, bone marrow-derived macrophages (BMDMs) were isolated, and mitochondrial function and pyroptosis were assessed. Furthermore, the study compared the cardioprotective effects of Kirenol with a specific NOX1/NOX4 inhibitor, GKT137831.</p><p><strong>Results: </strong>Kirenol gavage improved cardiac function, decreased infarct area, and alleviated inflammatory infiltration in mice subjected to myocardial I/R injury. Mechanistically, Kirenol inhibited NOX1 and NOX4 and enhanced mitochondrial function, ultimately attenuating the pyroptosis of macrophages. The therapeutic effects of Kirenol and GKT137831 were not significantly different.</p><p><strong>Conclusion: </strong>This study demonstrates that Kirenol mitigates myocardial I/R injury by inhibiting NOX1 and NOX4, restoring mitochondrial function, and ameliorating macrophage pyroptosis.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07635-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Macrophage-mediated inflammation plays a crucial role in the pathophysiological process of myocardial ischemia/reperfusion (I/R) injury. Recent studies have highlighted the importance of mitochondrial function and inflammasome activation in the inflammatory process. Kirenol, a well-known natural compound, has been shown to regulate inflammation in various diseases. This study investigated whether Kirenol could exert anti-inflammatory effects on macrophages during myocardial I/R injury.
Methods: Mouse myocardial I/R models were established by 45 min of ischemia followed by 24 h of reperfusion. Saline or Kirenol treatment was administered. In vivo assessments included the evaluation of cardiac function, infarcted area, and immune cell infiltration. Subsequently, bone marrow-derived macrophages (BMDMs) were isolated, and mitochondrial function and pyroptosis were assessed. Furthermore, the study compared the cardioprotective effects of Kirenol with a specific NOX1/NOX4 inhibitor, GKT137831.
Results: Kirenol gavage improved cardiac function, decreased infarct area, and alleviated inflammatory infiltration in mice subjected to myocardial I/R injury. Mechanistically, Kirenol inhibited NOX1 and NOX4 and enhanced mitochondrial function, ultimately attenuating the pyroptosis of macrophages. The therapeutic effects of Kirenol and GKT137831 were not significantly different.
Conclusion: This study demonstrates that Kirenol mitigates myocardial I/R injury by inhibiting NOX1 and NOX4, restoring mitochondrial function, and ameliorating macrophage pyroptosis.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.