A S M Zisanur Rahman, Egor A Syroegin, Julieta Novomisky Nechcoff, Archit Devarajan, Yury S Polikanov, Silvia T Cardona
{"title":"Rationally designed pooled CRISPRi-seq uncovers an inhibitor of bacterial peptidyl-tRNA hydrolase.","authors":"A S M Zisanur Rahman, Egor A Syroegin, Julieta Novomisky Nechcoff, Archit Devarajan, Yury S Polikanov, Silvia T Cardona","doi":"10.1016/j.celrep.2024.114967","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial mutant libraries with downregulated antibiotic targets are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we constructed an arrayed essential gene mutant library (EGML) in the antibiotic-resistant bacterium Burkholderia cenocepacia using CRISPR interference (CRISPRi). By modeling depletion levels and adjusting knockdown mutant inocula, we rationally designed and optimized a CRISPR interference-mediated pooled library of essential genes (CIMPLE) approaching coverage of the bacterial essential genome with mutant sensitization. We exposed CIMPLE to an uncharacterized bacterial growth inhibitor structurally different from antibiotics and discovered that it inhibits the essential peptidyl-tRNA hydrolase. Overall, CIMPLE leverages the advantages of arrayed and pooled CRISPRi libraries to uncover unexplored targets for antibiotic action.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114967"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114967","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial mutant libraries with downregulated antibiotic targets are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we constructed an arrayed essential gene mutant library (EGML) in the antibiotic-resistant bacterium Burkholderia cenocepacia using CRISPR interference (CRISPRi). By modeling depletion levels and adjusting knockdown mutant inocula, we rationally designed and optimized a CRISPR interference-mediated pooled library of essential genes (CIMPLE) approaching coverage of the bacterial essential genome with mutant sensitization. We exposed CIMPLE to an uncharacterized bacterial growth inhibitor structurally different from antibiotics and discovered that it inhibits the essential peptidyl-tRNA hydrolase. Overall, CIMPLE leverages the advantages of arrayed and pooled CRISPRi libraries to uncover unexplored targets for antibiotic action.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.