{"title":"Tripartite motif-containing protein 50 suppresses triple-negative breast cancer progression by regulating the epithelial-mesenchymal transition.","authors":"Danxiang Chen, Jing Jiang, Wei Zhang, Xinlin Li, Qidong Ge, Xia Liu, Xujun Li","doi":"10.1080/15384047.2024.2427410","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Tripartite motif-containing protein 50 (TRIM50) is a recently discovered E3 ubiquitin ligase that participates in tumor progression. TRIM50 is overexpressed in many cancers, although few studies focused on TRIM50's role in breast cancer.</p><p><strong>Methods: </strong>We overexpressed TRIM50 in triple-negative breast cancer cell lines using plasmid and found that TRIM50 upregulation markedly reduced breast cancer cell proliferation, clone formation, and migration, as well as promoted breast cancer cell apoptosis. Western blotting revealed that accumulated TRIM50 resulted in both mRNA and protein depletion of SNAI1, and partially attenuated the epithelial-mesenchymal transition (EMT) induced by SNAI1.</p><p><strong>Results: </strong>In this study, we demonstrate that TRIM50 is downregulated in human breast cancer and that its overexpression closely correlates with diminished invasion capacity in breast cancer, suggesting that TRIM50 may serve as a diagnostic marker and therapeutic target.</p><p><strong>Conclusion: </strong>TRIM50 plays a key role in breast cancer proliferation and potentially serves as a prognostic and therapeutic target.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2427410"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2427410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Tripartite motif-containing protein 50 (TRIM50) is a recently discovered E3 ubiquitin ligase that participates in tumor progression. TRIM50 is overexpressed in many cancers, although few studies focused on TRIM50's role in breast cancer.
Methods: We overexpressed TRIM50 in triple-negative breast cancer cell lines using plasmid and found that TRIM50 upregulation markedly reduced breast cancer cell proliferation, clone formation, and migration, as well as promoted breast cancer cell apoptosis. Western blotting revealed that accumulated TRIM50 resulted in both mRNA and protein depletion of SNAI1, and partially attenuated the epithelial-mesenchymal transition (EMT) induced by SNAI1.
Results: In this study, we demonstrate that TRIM50 is downregulated in human breast cancer and that its overexpression closely correlates with diminished invasion capacity in breast cancer, suggesting that TRIM50 may serve as a diagnostic marker and therapeutic target.
Conclusion: TRIM50 plays a key role in breast cancer proliferation and potentially serves as a prognostic and therapeutic target.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.