Heather D Curtsinger, Sofía Martínez-Absalón, Yuchang Liu, Allison J Lopatkin
{"title":"The metabolic burden associated with plasmid acquisition: An assessment of the unrecognized benefits to host cells.","authors":"Heather D Curtsinger, Sofía Martínez-Absalón, Yuchang Liu, Allison J Lopatkin","doi":"10.1002/bies.202400164","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400164"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bies.202400164","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.
期刊介绍:
molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged
BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.