DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1.

IF 5.7 2区 生物学 Q1 BIOLOGY
Hao Wang, Lei Zhang, Yunxiao Shang
{"title":"DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1.","authors":"Hao Wang, Lei Zhang, Yunxiao Shang","doi":"10.1186/s13062-024-00557-z","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress has been shown to play a pivotal role in the pathogenesis of asthma. DEPTOR (DEP Domain Containing MTOR Interacting Protein) is an endogenous mTOR inhibitor that participates in various physiological processes such as cell growth, apoptosis, autophagy, and ER homeostasis. However, the role of DEPTOR in the pathogenesis of asthma is still unknown. In this study, an ovalbumin (OVA)-induced mice model and IL-13 induced 16HBE cells were used to evaluate the effect of DEPTOR on asthma. A decreased DEPTOR expression was shown in the lung tissues of OVA-mice and IL-13 induced 16HBE cells. Upregulation of DEPTOR attenuated airway goblet cell hyperplasia, inhibited mucus hypersecretion, decreased the expression of mucin MUC5AC, and suppressed the level of inflammatory factors IL-4 and IL-5, which were all induced by OVA treatment. The increased protein expression of ER stress markers GRP78, CHOP, unfolded protein response (UPR) related proteins, and apoptosis markers in OVA mice were also inhibited by DEPTOR overexpression. In IL-13 induced 16HBE cells, overexpression of DEPTOR decreased IL-4, IL-5, and MUC5AC levels, preventing ER stress response and UPR process. Furthermore, from the proteomics results, we identified that SOD1 (Cu/Zn Superoxide Dismutase 1) may be the downstream factor of DEPTOR. Similar to DEPTOR, upregulation of SOD1 alleviated asthma progression. Rescue experiments showed that SOD1 inhibition abrogates the remission effect of DEPTOR on ER stress in vitro. In conclusion, these data suggested that DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"114"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00557-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endoplasmic reticulum (ER) stress has been shown to play a pivotal role in the pathogenesis of asthma. DEPTOR (DEP Domain Containing MTOR Interacting Protein) is an endogenous mTOR inhibitor that participates in various physiological processes such as cell growth, apoptosis, autophagy, and ER homeostasis. However, the role of DEPTOR in the pathogenesis of asthma is still unknown. In this study, an ovalbumin (OVA)-induced mice model and IL-13 induced 16HBE cells were used to evaluate the effect of DEPTOR on asthma. A decreased DEPTOR expression was shown in the lung tissues of OVA-mice and IL-13 induced 16HBE cells. Upregulation of DEPTOR attenuated airway goblet cell hyperplasia, inhibited mucus hypersecretion, decreased the expression of mucin MUC5AC, and suppressed the level of inflammatory factors IL-4 and IL-5, which were all induced by OVA treatment. The increased protein expression of ER stress markers GRP78, CHOP, unfolded protein response (UPR) related proteins, and apoptosis markers in OVA mice were also inhibited by DEPTOR overexpression. In IL-13 induced 16HBE cells, overexpression of DEPTOR decreased IL-4, IL-5, and MUC5AC levels, preventing ER stress response and UPR process. Furthermore, from the proteomics results, we identified that SOD1 (Cu/Zn Superoxide Dismutase 1) may be the downstream factor of DEPTOR. Similar to DEPTOR, upregulation of SOD1 alleviated asthma progression. Rescue experiments showed that SOD1 inhibition abrogates the remission effect of DEPTOR on ER stress in vitro. In conclusion, these data suggested that DEPTOR attenuates asthma progression by suppressing endoplasmic reticulum stress through SOD1.

DEPTOR 通过 SOD1 抑制内质网应激,从而减轻哮喘的恶化。
内质网(ER)应激已被证明在哮喘的发病机制中起着关键作用。DEPTOR(DEP Domain Containing MTOR Interacting Protein)是一种内源性 mTOR 抑制剂,参与细胞生长、凋亡、自噬和 ER 平衡等多种生理过程。然而,DEPTOR 在哮喘发病机制中的作用尚不清楚。本研究利用卵清蛋白(OVA)诱导的小鼠模型和 IL-13 诱导的 16HBE 细胞来评估 DEPTOR 对哮喘的影响。结果显示,DEPTOR在卵清蛋白诱导的小鼠肺组织和IL-13诱导的16HBE细胞中表达减少。DEPTOR的上调减轻了气道上皮细胞的增生,抑制了粘液的过度分泌,降低了粘蛋白MUC5AC的表达,抑制了炎症因子IL-4和IL-5的水平。DEPTOR的过表达还抑制了OVA小鼠体内ER应激标志物GRP78、CHOP、未折叠蛋白反应(UPR)相关蛋白和细胞凋亡标志物的蛋白表达。在IL-13诱导的16HBE细胞中,DEPTOR的过表达降低了IL-4、IL-5和MUC5AC的水平,阻止了ER应激反应和UPR过程。此外,我们还从蛋白质组学结果中发现,SOD1(铜/锌超氧化物歧化酶1)可能是DEPTOR的下游因子。与 DEPTOR 类似,上调 SOD1 也能缓解哮喘的恶化。拯救实验表明,抑制 SOD1 会减弱 DEPTOR 对体外 ER 应激的缓解作用。总之,这些数据表明,DEPTOR通过SOD1抑制内质网应激,从而减轻哮喘的恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信