Ye Chong, Kun Zhang, Yuting Zeng, Qian Chen, Qian Feng, Nan Cui, Pengsheng Zheng, Litao Ruan, Wei Hua
{"title":"ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both In Vivo and In Vitro <sup>†</sup>.","authors":"Ye Chong, Kun Zhang, Yuting Zeng, Qian Chen, Qian Feng, Nan Cui, Pengsheng Zheng, Litao Ruan, Wei Hua","doi":"10.3390/cancers16213717","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, we aim to investigate the function and molecular mechanism of ZNF281 in uterine cervical carcinoma. <b>Methods</b>: We conducted immunohistochemistry and Western blot assays to determine the expression of ZNF281 in eight human cervical cancer tissues. And, xenograft experiments involving the injection of HeLa cells into nude mice was used to determine the function of ZNF281 on proliferation. Transwell assays were used to detect the migration and invasion of HeLa cells after indicated that ZNF281 overexpression. <b>Results:</b> Our results indicated that ZNF281 protein levels were higher in cervical cancer tissues compared to normal cervical tissues. Additionally, ZNF281 was expressed in human cervical carcinoma cell lines, including HeLa, SiHa, C-33 A, CaSki, and HT-3, and is localized in both the cell nucleus and cytoplasm. ZNF281 overexpression did not influence HeLa cell proliferation or tumor size in situ. Moreover, nude mice injected with ZNF281-overexpressing cell lines developed more tumor lesions in the lungs compared to those injected with control cell lines. <b>Conclusions</b>: These findings suggest that ZNF281 is associated with tumor metastasis without affecting cell proliferation, both in vivo and in vitro.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 21","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16213717","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, we aim to investigate the function and molecular mechanism of ZNF281 in uterine cervical carcinoma. Methods: We conducted immunohistochemistry and Western blot assays to determine the expression of ZNF281 in eight human cervical cancer tissues. And, xenograft experiments involving the injection of HeLa cells into nude mice was used to determine the function of ZNF281 on proliferation. Transwell assays were used to detect the migration and invasion of HeLa cells after indicated that ZNF281 overexpression. Results: Our results indicated that ZNF281 protein levels were higher in cervical cancer tissues compared to normal cervical tissues. Additionally, ZNF281 was expressed in human cervical carcinoma cell lines, including HeLa, SiHa, C-33 A, CaSki, and HT-3, and is localized in both the cell nucleus and cytoplasm. ZNF281 overexpression did not influence HeLa cell proliferation or tumor size in situ. Moreover, nude mice injected with ZNF281-overexpressing cell lines developed more tumor lesions in the lungs compared to those injected with control cell lines. Conclusions: These findings suggest that ZNF281 is associated with tumor metastasis without affecting cell proliferation, both in vivo and in vitro.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.