3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2024-11-11 DOI:10.1002/bip.23639
Marija Jovanović, Miloš Petrović, Dušica Stojanović, Nataša Radulović, Danijel Pantelić, Ivana Stajčić, Petar Uskoković
{"title":"3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect.","authors":"Marija Jovanović, Miloš Petrović, Dušica Stojanović, Nataša Radulović, Danijel Pantelić, Ivana Stajčić, Petar Uskoković","doi":"10.1002/bip.23639","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, scaffolds based on natural polymer gelatin A, blended with polyvinylpyrrolidone were crosslinked by genipin (0.5 and 1 wt%), in order to investigate their mechanical performance and potential for biomedical application. Semi-solid extrusion (SSE) 3D printing technique was used, enabling in situ crosslinking of the blend during processing. Swelling test showed that the swelling ratio reduces with higher concentration of genipin due to an increased crosslinking. The FTIR analysis confirmed the crosslinking of scaffolds by genipin. DSC analysis and mechanical testing have shown improved thermal and mechanical properties. Morphological analysis of scaffolds by FESEM showed increased toughening of the material with the crosslinking. Tensile strength and microhardness showed a significant rise in scaffolds with the increase in genipin content, which was up to 93.8% and 125.3%, respectively. These findings were in accordance with morphological features present in samples. The biological effect of the scaffold matrix system was evaluated by qualitative and quantitative cytotoxicity assessment in vitro, demonstrating the absence of cytotoxicity in tested preparations in a direct test. The cytotoxicity index based on the metabolic activity of cells in an indirect test showed up to 20% reduction of viability compared with the control, confirming the absence of cytotoxicity, which was additionally verified by propidium iodine staining of the cells exposed to scaffolds. The presented gelatin-based crosslinked scaffolds obtained by 3D printing represent good candidates for biomedical application and future research that includes further in vitro and in vivo analysis.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23639"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23639","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, scaffolds based on natural polymer gelatin A, blended with polyvinylpyrrolidone were crosslinked by genipin (0.5 and 1 wt%), in order to investigate their mechanical performance and potential for biomedical application. Semi-solid extrusion (SSE) 3D printing technique was used, enabling in situ crosslinking of the blend during processing. Swelling test showed that the swelling ratio reduces with higher concentration of genipin due to an increased crosslinking. The FTIR analysis confirmed the crosslinking of scaffolds by genipin. DSC analysis and mechanical testing have shown improved thermal and mechanical properties. Morphological analysis of scaffolds by FESEM showed increased toughening of the material with the crosslinking. Tensile strength and microhardness showed a significant rise in scaffolds with the increase in genipin content, which was up to 93.8% and 125.3%, respectively. These findings were in accordance with morphological features present in samples. The biological effect of the scaffold matrix system was evaluated by qualitative and quantitative cytotoxicity assessment in vitro, demonstrating the absence of cytotoxicity in tested preparations in a direct test. The cytotoxicity index based on the metabolic activity of cells in an indirect test showed up to 20% reduction of viability compared with the control, confirming the absence of cytotoxicity, which was additionally verified by propidium iodine staining of the cells exposed to scaffolds. The presented gelatin-based crosslinked scaffolds obtained by 3D printing represent good candidates for biomedical application and future research that includes further in vitro and in vivo analysis.

由吉尼平交联的三维打印明胶基支架:机械性能和生物效应评估
在这项研究中,基尼平(0.5 和 1 wt%)交联了基于天然聚合物明胶 A 和聚乙烯吡咯烷酮的支架,以研究其机械性能和生物医学应用潜力。采用半固态挤压(SSE)三维打印技术,可在加工过程中对混合物进行原位交联。膨胀测试表明,由于交联度提高,随着基因素浓度的增加,膨胀率降低。傅立叶变换红外光谱分析证实了基尼平对支架的交联作用。DSC 分析和机械测试表明,热性能和机械性能均有所改善。利用 FESEM 对支架进行的形态分析表明,交联后材料的韧性增强。拉伸强度和显微硬度显示,随着基因素含量的增加,支架的拉伸强度和显微硬度显著提高,分别达到 93.8% 和 125.3%。这些结果与样品的形态特征相符。通过体外定性和定量细胞毒性评估,对支架基质系统的生物效应进行了评价,结果表明在直接测试中,受试制剂不存在细胞毒性。在间接测试中,基于细胞代谢活动的细胞毒性指数显示,与对照组相比,细胞存活率最多降低了 20%,这证实了不存在细胞毒性。通过三维打印获得的明胶基交联支架是生物医学应用和未来研究(包括进一步的体外和体内分析)的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信