Noor Fatima, M Israr Khan, Hira Jawed, Urooj Qureshi, Zaheer Ul-Haq, Rahman M Hafizur, Tawaf Ali Shah, Musaab Dauelbait, Yousef A Bin Jardan, Gamal A Shazly
{"title":"Cinnamaldehyde ameliorates diabetes-induced biochemical impairments and AGEs macromolecules in a pre-clinical model of diabetic nephropathy.","authors":"Noor Fatima, M Israr Khan, Hira Jawed, Urooj Qureshi, Zaheer Ul-Haq, Rahman M Hafizur, Tawaf Ali Shah, Musaab Dauelbait, Yousef A Bin Jardan, Gamal A Shazly","doi":"10.1186/s40360-024-00811-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cinnamaldehyde, has various therapeutic potentials including glucose-lowering effect, and insulinotropic effect; however, its glycation inhibitory mechanism is not known yet. In this study, we explored the effects of cinnamaldehyde for its AGEs inhibitory mechanism in a streptozotocin-complete Freund's adjuvant (STZ-CFA) induced diabetic nephropathy (DN) rat model.</p><p><strong>Methods: </strong>Pre-clinical DN model was developed by the administration of multiple low doses of STZ-CFA in rats, mainly characterized by abnormal blood parameters and nephrotic damages. Diabetes-related systemic profile and histopathological hallmarks were evaluated using biochemical assays, microscopic imaging, immunoblot, and real-time PCR analyses, supported by cinnamaldehyde-albumin interaction assessed using STD-NMR and in silico site-directed interactions in the presence of glucose.</p><p><strong>Results: </strong>Cinnamaldehyde-treatment significantly reversed DN hallmarks, fasting blood glucose (FBG), serum insulin, glycated hemoglobin (HbA1c), urinary microalbumin, and creatinine contrasted to non-treated DN rats and aminoguanidine, a positive reference advanced glycation end products (AGEs) inhibitor. The pathological depositions of AGEs, receptor for advanced glycation end products (RAGE), and carboxymethyl lysine (CML), and transcriptional levels of AGE-RAGE targeted immunomodulatory factors (IL1β, TNF-α, NF-κB, TGF-β) were significantly improved in cinnamaldehyde treated rats as compared to aminoguanidine. Cinnamaldehyde post-treatment improved pancreatic pathology and systemic glycemic index (0.539 ± 0.01 vs. 0.040 ± 0.001, P < 0.001) in DN rats. Subsequently, in silico profiling of cinnamaldehyde defined the competitive binding inhibition with glucose in AGE and RAGE receptors that was further confirmed by in vitro STD-NMR analysis.</p><p><strong>Conclusion: </strong>These findings suggest potential role of cinnamaldehyde in reversing STZ-induced diabetic nephropathic impairments; therefore, appears promising candidate for further pharmacological explorations towards diabetes-associated complications.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"85"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00811-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cinnamaldehyde, has various therapeutic potentials including glucose-lowering effect, and insulinotropic effect; however, its glycation inhibitory mechanism is not known yet. In this study, we explored the effects of cinnamaldehyde for its AGEs inhibitory mechanism in a streptozotocin-complete Freund's adjuvant (STZ-CFA) induced diabetic nephropathy (DN) rat model.
Methods: Pre-clinical DN model was developed by the administration of multiple low doses of STZ-CFA in rats, mainly characterized by abnormal blood parameters and nephrotic damages. Diabetes-related systemic profile and histopathological hallmarks were evaluated using biochemical assays, microscopic imaging, immunoblot, and real-time PCR analyses, supported by cinnamaldehyde-albumin interaction assessed using STD-NMR and in silico site-directed interactions in the presence of glucose.
Results: Cinnamaldehyde-treatment significantly reversed DN hallmarks, fasting blood glucose (FBG), serum insulin, glycated hemoglobin (HbA1c), urinary microalbumin, and creatinine contrasted to non-treated DN rats and aminoguanidine, a positive reference advanced glycation end products (AGEs) inhibitor. The pathological depositions of AGEs, receptor for advanced glycation end products (RAGE), and carboxymethyl lysine (CML), and transcriptional levels of AGE-RAGE targeted immunomodulatory factors (IL1β, TNF-α, NF-κB, TGF-β) were significantly improved in cinnamaldehyde treated rats as compared to aminoguanidine. Cinnamaldehyde post-treatment improved pancreatic pathology and systemic glycemic index (0.539 ± 0.01 vs. 0.040 ± 0.001, P < 0.001) in DN rats. Subsequently, in silico profiling of cinnamaldehyde defined the competitive binding inhibition with glucose in AGE and RAGE receptors that was further confirmed by in vitro STD-NMR analysis.
Conclusion: These findings suggest potential role of cinnamaldehyde in reversing STZ-induced diabetic nephropathic impairments; therefore, appears promising candidate for further pharmacological explorations towards diabetes-associated complications.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.