{"title":"An improved DNA extraction method in okra for rapid PCR detection of Okra enation leaf curl virus from diverse Indian regions","authors":"Ankit Kumar, Jyoti Singh, Deepak Panwar, Anupma Singh, Ravi Singh Thapa, Rakesh Kumar, Dharmendra Pratap","doi":"10.1007/s00203-024-04176-0","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction of DNA from okra (<i>Abelmoschus esculentus</i>) is challenging due to its high mucilage and polysaccharide content, which can hinder both the yield and quality of DNA. In this study, an improved DNA isolation method is described incorporating a key modification being the use of solution I (1 M NaCl and 2% Sarcosyl) as a pre-treatment before applying the CTAB buffer, resulting in high-purity genomic DNA in just 1 h and 45 min., making it suitable for handling large sample sizes due to its rapid processing capabilities. This enhanced DNA extraction method was crucial for the accurate and rapid molecular detection of <i>Okra enation leaf curl virus </i>(OELCuV), a monopartite begomovirus that has spread across various regions of India. Transmitted by the whitefly (<i>Bemisia tabaci</i>), OELCuV causes leaf curling, enations, and stunted growth in okra, leading to significant yield losses. The surveys conducted during the 2020–21 and 2021–22 sowing seasons revealed disease incidence ranging from 14.03 to 67.57%. The extracted DNA via the improved DNA extraction method enhanced the speed of PCR based molecular identification of OELCuV, using virus-specific coat protein primers. The amplified CP genes were cloned and sequenced to study the CP gene based diversity among OELCuV isolates from different states of India. The CP gene nucleotide identity among the studied OELCuV isolates ranged from 95.57 to 99.27%, while comparison with previously reported Indian OELCuV CP sequences, the nucleotide identity ranged from 89.35 to 98.83%. The successful application of this optimized DNA extraction method sped up the detection process but also holds promise for broader use in the molecular study of okra and other mucilaginous crops, particularly in the rapid and reliable identification of begomoviruses. The optimized DNA extraction method significantly accelerated the detection of OELCuV, demonstrating its efficiency and reliability. This method shows strong potential for broader applications in the molecular study of okra and other mucilaginous crops, making it a valuable tool for future research and disease management.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04176-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extraction of DNA from okra (Abelmoschus esculentus) is challenging due to its high mucilage and polysaccharide content, which can hinder both the yield and quality of DNA. In this study, an improved DNA isolation method is described incorporating a key modification being the use of solution I (1 M NaCl and 2% Sarcosyl) as a pre-treatment before applying the CTAB buffer, resulting in high-purity genomic DNA in just 1 h and 45 min., making it suitable for handling large sample sizes due to its rapid processing capabilities. This enhanced DNA extraction method was crucial for the accurate and rapid molecular detection of Okra enation leaf curl virus (OELCuV), a monopartite begomovirus that has spread across various regions of India. Transmitted by the whitefly (Bemisia tabaci), OELCuV causes leaf curling, enations, and stunted growth in okra, leading to significant yield losses. The surveys conducted during the 2020–21 and 2021–22 sowing seasons revealed disease incidence ranging from 14.03 to 67.57%. The extracted DNA via the improved DNA extraction method enhanced the speed of PCR based molecular identification of OELCuV, using virus-specific coat protein primers. The amplified CP genes were cloned and sequenced to study the CP gene based diversity among OELCuV isolates from different states of India. The CP gene nucleotide identity among the studied OELCuV isolates ranged from 95.57 to 99.27%, while comparison with previously reported Indian OELCuV CP sequences, the nucleotide identity ranged from 89.35 to 98.83%. The successful application of this optimized DNA extraction method sped up the detection process but also holds promise for broader use in the molecular study of okra and other mucilaginous crops, particularly in the rapid and reliable identification of begomoviruses. The optimized DNA extraction method significantly accelerated the detection of OELCuV, demonstrating its efficiency and reliability. This method shows strong potential for broader applications in the molecular study of okra and other mucilaginous crops, making it a valuable tool for future research and disease management.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.