{"title":"Anti-Obesity Effects of Calcium Fructoborate by Inhibiting Adipogenesis and Increasing SIRT's Expression in 3T3-L1 Cells.","authors":"Ezgi Nur Çil, Yasemin Soysal","doi":"10.1007/s12011-024-04444-6","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a global public health problem that can lead to mortality and morbidity. Studies on the pathophysiology of obesity for effective and safe treatments are focused on the mechanisms of adipogenesis. The association between boron treatment and weight loss has been reported, but its anti-adipogenic mechanisms and effects on preadipocytes remain unclear. This study aims to investigate the effects of boron compounds boric acid (BA) and calcium fructoborate (CaFB) on adipogenesis using the most widely used in vitro 3T3-L1 cellular model. In our study, cytotoxicity, Oil Red O (ORO), gene and protein expression analyses and cellular NAD measurements of boron compounds were performed. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) transcription factors are the main regulators of adipogenesis, and boron compounds affect them at gene and protein levels by showing anti-obesity effects. This is the first study to show that CaFB has anti-obesity properties in mouse adipocytes. Sirtuins, known as the longevity genes, were also activated from boron treatment. Results of this research provide new basic knowledge and insights into the effect of boron-based compounds on obesity. It also offers potential prospects for the development of effective treatment and/or supportive treatment methods.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04444-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a global public health problem that can lead to mortality and morbidity. Studies on the pathophysiology of obesity for effective and safe treatments are focused on the mechanisms of adipogenesis. The association between boron treatment and weight loss has been reported, but its anti-adipogenic mechanisms and effects on preadipocytes remain unclear. This study aims to investigate the effects of boron compounds boric acid (BA) and calcium fructoborate (CaFB) on adipogenesis using the most widely used in vitro 3T3-L1 cellular model. In our study, cytotoxicity, Oil Red O (ORO), gene and protein expression analyses and cellular NAD measurements of boron compounds were performed. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) transcription factors are the main regulators of adipogenesis, and boron compounds affect them at gene and protein levels by showing anti-obesity effects. This is the first study to show that CaFB has anti-obesity properties in mouse adipocytes. Sirtuins, known as the longevity genes, were also activated from boron treatment. Results of this research provide new basic knowledge and insights into the effect of boron-based compounds on obesity. It also offers potential prospects for the development of effective treatment and/or supportive treatment methods.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.