Ahmed S Shehata, Marwa A Samy, Sherien E Sobhy, Aida M Farag, Ibrahim M El-Sherbiny, Ahmed A Saleh, Elsayed E Hafez, Mamdouh Abdel-Mogib, Haiam M Aboul-Ela
{"title":"Isolation and identification of antifungal, antibacterial and nematocide agents from marine bacillus gottheilii MSB1.","authors":"Ahmed S Shehata, Marwa A Samy, Sherien E Sobhy, Aida M Farag, Ibrahim M El-Sherbiny, Ahmed A Saleh, Elsayed E Hafez, Mamdouh Abdel-Mogib, Haiam M Aboul-Ela","doi":"10.1186/s12896-024-00920-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic fungi employ numerous strategies to colonize plants, infect them, reduce crop yield and quality, and cause significant losses in agricultural production. The increasing use of chemical pesticides has led to various ecological and environmental issues, including the emergence of resistant weeds, soil compaction, and water pollution, all negatively impacting agricultural sustainability. Additionally, the extensive development of synthetic fungicides has adverse effects on animal and human health, prompting the exploration of alternative approaches and green strategies for phytopathogen control. Microorganisms living in sponges represent a promising source of novel bioactive secondary metabolites, potentially useful in developing new nematicidal and antimicrobial agents. This study focuses on extracting bioactive compounds from endosymbiotic bacteria associated with the marine sponge Hyrtios erect sp. (collected from NIOF Station, Hurghada, Red Sea, Egypt) using various organic solvents. Bacillus sp. was isolated and identified through 16 S rRNA gene sequencing. The biocidal activity of Bacillus gotheilii MSB1 extracts was screened against plant pathogenic bacteria, fungi, and nematodes. The n-butanol extract showed significant potential as a biological fungicide against Alternaria alternata and Fusarium oxysporum. Both n-hexane and ethyl acetate extracts exhibited negative impacts against the plant pathogenic bacteria Erwinia carotovora and Ralstonia solanacearum, whereas the n-butanol extract had a positive effect. Regarding nematicidal activity, ethyl acetate and n-butanol extracts demonstrated in-vitro activity against the root-knot nematode Meloidogyne incognita, which causes serious vegetable crop diseases, but the n-hexane extract showed no positive effects. The findings suggest that bioactive compounds from endosymbiotic bacteria associated with marine sponges, particularly B. gotheilii MSB1, hold significant potential as alternative biological control agents against plant pathogens. The n-butanol extract, in particular, displayed promising biocidal activities against various plant pathogenic fungi, bacteria, and nematodes. These results support further exploration and development of such bioactive compounds as sustainable, environmentally friendly alternatives to synthetic pesticides and fungicides in agricultural practices.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"92"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00920-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic fungi employ numerous strategies to colonize plants, infect them, reduce crop yield and quality, and cause significant losses in agricultural production. The increasing use of chemical pesticides has led to various ecological and environmental issues, including the emergence of resistant weeds, soil compaction, and water pollution, all negatively impacting agricultural sustainability. Additionally, the extensive development of synthetic fungicides has adverse effects on animal and human health, prompting the exploration of alternative approaches and green strategies for phytopathogen control. Microorganisms living in sponges represent a promising source of novel bioactive secondary metabolites, potentially useful in developing new nematicidal and antimicrobial agents. This study focuses on extracting bioactive compounds from endosymbiotic bacteria associated with the marine sponge Hyrtios erect sp. (collected from NIOF Station, Hurghada, Red Sea, Egypt) using various organic solvents. Bacillus sp. was isolated and identified through 16 S rRNA gene sequencing. The biocidal activity of Bacillus gotheilii MSB1 extracts was screened against plant pathogenic bacteria, fungi, and nematodes. The n-butanol extract showed significant potential as a biological fungicide against Alternaria alternata and Fusarium oxysporum. Both n-hexane and ethyl acetate extracts exhibited negative impacts against the plant pathogenic bacteria Erwinia carotovora and Ralstonia solanacearum, whereas the n-butanol extract had a positive effect. Regarding nematicidal activity, ethyl acetate and n-butanol extracts demonstrated in-vitro activity against the root-knot nematode Meloidogyne incognita, which causes serious vegetable crop diseases, but the n-hexane extract showed no positive effects. The findings suggest that bioactive compounds from endosymbiotic bacteria associated with marine sponges, particularly B. gotheilii MSB1, hold significant potential as alternative biological control agents against plant pathogens. The n-butanol extract, in particular, displayed promising biocidal activities against various plant pathogenic fungi, bacteria, and nematodes. These results support further exploration and development of such bioactive compounds as sustainable, environmentally friendly alternatives to synthetic pesticides and fungicides in agricultural practices.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.