Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Sangdo Yook , Anshu Deewan , Leah Ziolkowski , Stephan Lane , Payman Tohidifar , Ming-Hsun Cheng , Vijay Singh , Matthew J. Stasiewicz , Christopher V. Rao , Yong-Su Jin
{"title":"Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates","authors":"Sangdo Yook ,&nbsp;Anshu Deewan ,&nbsp;Leah Ziolkowski ,&nbsp;Stephan Lane ,&nbsp;Payman Tohidifar ,&nbsp;Ming-Hsun Cheng ,&nbsp;Vijay Singh ,&nbsp;Matthew J. Stasiewicz ,&nbsp;Christopher V. Rao ,&nbsp;Yong-Su Jin","doi":"10.1016/j.biortech.2024.131806","DOIUrl":null,"url":null,"abstract":"<div><div><em>Yarrowia lipolytica</em>, an oleaginous yeast, shows promise for industrial fermentation due to its robust acetyl-CoA flux and well-developed genetic engineering tools. However, its lack of an active xylose metabolism restricts the conversion of cellulosic sugars to valuable products. To address this, metabolic engineering, and adaptive laboratory evolution (ALE) were applied to the <em>Y. lipolytica</em> PO1f strain, resulting in an efficient xylose-assimilating strain (XEV). Whole-genome sequencing (WGS) of the XEV followed by reverse engineering revealed that the amplification of the heterologous oxidoreductase pathway and a mutation in the GTPase-activating protein gene (YALI0B12100g) might be the primary reasons for improved xylose assimilation in the XEV strain. When a sorghum hydrolysate was used, the XEV strain showed superior xylose consumption and lipid production compared to its parental strain (X123). This study advances our understanding of xylose metabolism in <em>Y. lipolytica</em> and proposes effective metabolic engineering strategies for optimizing lignocellulosic hydrolysates.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131806"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015104","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Yarrowia lipolytica, an oleaginous yeast, shows promise for industrial fermentation due to its robust acetyl-CoA flux and well-developed genetic engineering tools. However, its lack of an active xylose metabolism restricts the conversion of cellulosic sugars to valuable products. To address this, metabolic engineering, and adaptive laboratory evolution (ALE) were applied to the Y. lipolytica PO1f strain, resulting in an efficient xylose-assimilating strain (XEV). Whole-genome sequencing (WGS) of the XEV followed by reverse engineering revealed that the amplification of the heterologous oxidoreductase pathway and a mutation in the GTPase-activating protein gene (YALI0B12100g) might be the primary reasons for improved xylose assimilation in the XEV strain. When a sorghum hydrolysate was used, the XEV strain showed superior xylose consumption and lipid production compared to its parental strain (X123). This study advances our understanding of xylose metabolism in Y. lipolytica and proposes effective metabolic engineering strategies for optimizing lignocellulosic hydrolysates.

Abstract Image

从木质纤维素水解物中生产脂类的亚罗诺脂溶菌的工程和进化。
脂肪分解酵母(Yarrowia lipolytica)是一种含油酵母,由于其强大的乙酰-CoA 通量和完善的基因工程工具,有望用于工业发酵。然而,由于缺乏活跃的木糖代谢,限制了纤维素糖向有价值产品的转化。为解决这一问题,研究人员在 Y. lipolytica PO1f 菌株上应用了代谢工程和适应性实验室进化(ALE)技术,从而获得了高效的木糖同化菌株(XEV)。对 XEV 进行全基因组测序(WGS)并进行逆向工程后发现,异源氧化还原酶途径的扩增和 GTPase 激活蛋白基因(YALI0B12100g)的突变可能是 XEV 菌株木糖同化能力提高的主要原因。与亲本菌株(X123)相比,当使用高粱水解物时,XEV 菌株表现出更高的木糖消耗量和脂质产量。这项研究加深了我们对Y. lipolytica木糖代谢的了解,并为优化木质纤维素水解物提出了有效的代谢工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信