Yixin Peng, Mohd Yasir Khan, Yongxiang Gao, Wei Wang
{"title":"Self-Generated Ions Modify the Pair Interaction and the Phase Separation of Chemically Active Colloids.","authors":"Yixin Peng, Mohd Yasir Khan, Yongxiang Gao, Wei Wang","doi":"10.1002/asia.202400923","DOIUrl":null,"url":null,"abstract":"<p><p>Chemically active colloids that release/consume ions are an important class of active matter, and exhibit interesting collective behaviors such as phase separation, swarming, and waves. Key to these behaviors is the pair-wise interactions mediated by the concentration gradient of self-generated ions. This interaction is often simplified as a pair-wise force decaying at 1/r2, where r is the interparticle distance. Here, we show that this simplification fails for isotropic and immotile active colloids with net ion production, such as Ag colloids in H2O2. Specifically, the production of ions on the surface of the Ag colloids increases the local ion concentration, c, and attenuates the pair-wise interaction force that scales with ∇c/c. As a result, the attractive force between an Ag colloid and its neighbor (active or passive) decays at 1/r or 1/r2 for small or large r, respectively. In a population, the attraction of a colloid by a growing cluster also scales with ∇c/c, so that medium-sized clusters grow fastest, and that the cluster coarsening slows with time. These results, supported by finite element and Brownian dynamic simulations, highlight the important role of self-generated ions in shaping the collective behavior of chemically active colloids.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400923"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400923","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemically active colloids that release/consume ions are an important class of active matter, and exhibit interesting collective behaviors such as phase separation, swarming, and waves. Key to these behaviors is the pair-wise interactions mediated by the concentration gradient of self-generated ions. This interaction is often simplified as a pair-wise force decaying at 1/r2, where r is the interparticle distance. Here, we show that this simplification fails for isotropic and immotile active colloids with net ion production, such as Ag colloids in H2O2. Specifically, the production of ions on the surface of the Ag colloids increases the local ion concentration, c, and attenuates the pair-wise interaction force that scales with ∇c/c. As a result, the attractive force between an Ag colloid and its neighbor (active or passive) decays at 1/r or 1/r2 for small or large r, respectively. In a population, the attraction of a colloid by a growing cluster also scales with ∇c/c, so that medium-sized clusters grow fastest, and that the cluster coarsening slows with time. These results, supported by finite element and Brownian dynamic simulations, highlight the important role of self-generated ions in shaping the collective behavior of chemically active colloids.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).