Revealing the Dual Role of Ammonia in the Hydroxide Co-precipitation Synthesis of Cobalt-free Nickel-rich LiNi0.9Mn0.05Al0.05O2 (NMA955) Cathode Materials for Lithium-ion Batteries.
{"title":"Revealing the Dual Role of Ammonia in the Hydroxide Co-precipitation Synthesis of Cobalt-free Nickel-rich LiNi0.9Mn0.05Al0.05O2 (NMA955) Cathode Materials for Lithium-ion Batteries.","authors":"Jijim Fadilla Warman, Jotti Karunawan, Octia Floweri, Putri Nadia Suryadi, Sigit Puji Santosa, Ferry Iskandar","doi":"10.1002/asia.202401080","DOIUrl":null,"url":null,"abstract":"<p><p>Nickel-rich cobalt-free LiNi0.9Mn0.05Al0.05O2 (NMA955) is considered a promising cathode material to address the scarcity and soaring cost of cobalt. Particle size and elemental composition significantly impact the electrochemical performance of NMA955 cathodes. However, differences in precipitation rates among metal ions coveys a challenge in obtaining cathode materials with the desired particle size and composition via hydroxide co-precipitation synthesis. Utilizing complexing agents like ammonia offers an effective strategy to tackle these issues. Here, we investigate the optimal ammonia concentration to achieve moderate particle size and precise material composition. Although ammonia only forms complex coordination with transition metals, its concentration also affects the final product's precipitation and composition, including aluminum. This study shows that ammonia serves a dual function in NMA synthesis via hydroxide co-precipitation, i.e., regulating particle size and adjusting elemental composition. It was found that an ammonia concentration of 1.2 M achieved optimal particle size and composition, resulting in superior electrochemical performance. NMA955 synthesized in 1.2 M ammonia demonstrated a high specific capacity of 188.12 mAh g-1 at 0.1C, retained 71.16% of its capacity after 200 cycles at 0.2C, and delivered 110.30 mAh g-1 at 5C. These results suggest tuning ammonia concentration is crucial for producing high-performance cathode materials.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401080"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401080","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel-rich cobalt-free LiNi0.9Mn0.05Al0.05O2 (NMA955) is considered a promising cathode material to address the scarcity and soaring cost of cobalt. Particle size and elemental composition significantly impact the electrochemical performance of NMA955 cathodes. However, differences in precipitation rates among metal ions coveys a challenge in obtaining cathode materials with the desired particle size and composition via hydroxide co-precipitation synthesis. Utilizing complexing agents like ammonia offers an effective strategy to tackle these issues. Here, we investigate the optimal ammonia concentration to achieve moderate particle size and precise material composition. Although ammonia only forms complex coordination with transition metals, its concentration also affects the final product's precipitation and composition, including aluminum. This study shows that ammonia serves a dual function in NMA synthesis via hydroxide co-precipitation, i.e., regulating particle size and adjusting elemental composition. It was found that an ammonia concentration of 1.2 M achieved optimal particle size and composition, resulting in superior electrochemical performance. NMA955 synthesized in 1.2 M ammonia demonstrated a high specific capacity of 188.12 mAh g-1 at 0.1C, retained 71.16% of its capacity after 200 cycles at 0.2C, and delivered 110.30 mAh g-1 at 5C. These results suggest tuning ammonia concentration is crucial for producing high-performance cathode materials.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).