Homère J Alves Monteiro, Dorte Bekkevold, George Pacheco, Stein Mortensen, Runyang Nicolas Lou, Nina O Therkildsen, Arnaud Tanguy, Chloé Robert, Pierre De Wit, Dorte Meldrup, Ane T Laugen, Philine S E Zu Ermgassen, Åsa Strand, Camille Saurel, Jakob Hemmer-Hansen
{"title":"Genome-Wide Population Structure in a Marine Keystone Species, the European Flat Oyster (Ostrea edulis).","authors":"Homère J Alves Monteiro, Dorte Bekkevold, George Pacheco, Stein Mortensen, Runyang Nicolas Lou, Nina O Therkildsen, Arnaud Tanguy, Chloé Robert, Pierre De Wit, Dorte Meldrup, Ane T Laugen, Philine S E Zu Ermgassen, Åsa Strand, Camille Saurel, Jakob Hemmer-Hansen","doi":"10.1111/mec.17573","DOIUrl":null,"url":null,"abstract":"<p><p>Ostrea edulis, the European flat oyster, was once a widespread economically and ecologically important marine species, but has suffered dramatic declines over the past two centuries. Consequently, there has been a surge in European restoration efforts, many of which focus on restocking as a conservation measure. In this study, we used whole-genome sequencing (WGS) data to investigate the population structure, demographic history, and patterns of local adaptation of O. edulis across its natural distribution with increased sampling densities at Scandinavian localities. Results revealed seven distinct genetic clusters, including previously undescribed complex population structure in Norway, and evidence for introgression between genetic clusters in Scandinavia. We detected large structural variants (SVs) on three pseudo-chromosomes. These megabase long regions were characterised by strong linkage disequilibrium and clear geographical differentiation, suggestive of chromosomal inversions potentially associated with local adaptation. The results indicated that genomic traces of past translocations of non-native O. edulis were still present in some individuals, but overall, we found limited evidence of major impacts of translocations on the scale of contemporary population structure. Our findings highlight the importance of considering population structure and signatures of selection in the design of effective conservation strategies to preserve and restore wild native European flat oyster populations, and we provide direct knowledge safeguarding sustainable mitigation actions in this important species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17573"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17573","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ostrea edulis, the European flat oyster, was once a widespread economically and ecologically important marine species, but has suffered dramatic declines over the past two centuries. Consequently, there has been a surge in European restoration efforts, many of which focus on restocking as a conservation measure. In this study, we used whole-genome sequencing (WGS) data to investigate the population structure, demographic history, and patterns of local adaptation of O. edulis across its natural distribution with increased sampling densities at Scandinavian localities. Results revealed seven distinct genetic clusters, including previously undescribed complex population structure in Norway, and evidence for introgression between genetic clusters in Scandinavia. We detected large structural variants (SVs) on three pseudo-chromosomes. These megabase long regions were characterised by strong linkage disequilibrium and clear geographical differentiation, suggestive of chromosomal inversions potentially associated with local adaptation. The results indicated that genomic traces of past translocations of non-native O. edulis were still present in some individuals, but overall, we found limited evidence of major impacts of translocations on the scale of contemporary population structure. Our findings highlight the importance of considering population structure and signatures of selection in the design of effective conservation strategies to preserve and restore wild native European flat oyster populations, and we provide direct knowledge safeguarding sustainable mitigation actions in this important species.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms