DurreShahwar Muhammad, Natalie M Clark, Nathan E Tharp, Elizabeth C Chatt, Richard D Vierstra, Bonnie Bartel
{"title":"Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants.","authors":"DurreShahwar Muhammad, Natalie M Clark, Nathan E Tharp, Elizabeth C Chatt, Richard D Vierstra, Bonnie Bartel","doi":"10.1111/tpj.17129","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17129","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.