Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo
{"title":"Understanding the Spin of Metal Complexes from a Single-Molecule Perspective.","authors":"Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo","doi":"10.1002/smtd.202401302","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with aggregate spin behavior, single-molecule spin behavior can be accurately understood, controlled, and applied at the level of basic building blocks. The potential of single-molecule electronic and nuclear spins for monitoring and control represents a beacon of promise for the advancement of molecular spin devices, which are fabricated by connecting a single molecule between two electrodes. Metal complexes, celebrated for their superior magnetic attributes, are widely used in the devices to explore spin effects. Moreover, single-molecule electrical techniques with high signal-to-noise ratio, temporal resolution, and reliability help to understand the spin characteristics. In this review, the focus is on the devices with metal complexes, especially single-molecule magnets, and systematically present experimental and theoretical state of the art of this field at the single-molecule level, including the fundamental concepts of the electronic and nuclear spin and their basic spin effects. Then, several experimental methods developed to regulate the spin characteristics of metal complexes at single-molecule level are introduced, as well as the corresponding intrinsic mechanisms. A brief discussion is provided on the comprehensive applications and the considerable challenges of single-molecule spin devices in detail, along with a prospect on the potential future directions of this field.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401302"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401302","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with aggregate spin behavior, single-molecule spin behavior can be accurately understood, controlled, and applied at the level of basic building blocks. The potential of single-molecule electronic and nuclear spins for monitoring and control represents a beacon of promise for the advancement of molecular spin devices, which are fabricated by connecting a single molecule between two electrodes. Metal complexes, celebrated for their superior magnetic attributes, are widely used in the devices to explore spin effects. Moreover, single-molecule electrical techniques with high signal-to-noise ratio, temporal resolution, and reliability help to understand the spin characteristics. In this review, the focus is on the devices with metal complexes, especially single-molecule magnets, and systematically present experimental and theoretical state of the art of this field at the single-molecule level, including the fundamental concepts of the electronic and nuclear spin and their basic spin effects. Then, several experimental methods developed to regulate the spin characteristics of metal complexes at single-molecule level are introduced, as well as the corresponding intrinsic mechanisms. A brief discussion is provided on the comprehensive applications and the considerable challenges of single-molecule spin devices in detail, along with a prospect on the potential future directions of this field.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.