Tuning Electronic and Functional Properties in Defected MoS2 Films by Surface Patterning of Sulphur Atomic Vacancies.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Denis Gentili, Gabriele Calabrese, Eugenio Lunedei, Francesco Borgatti, Seyed A Mirshokraee, Vasiliki Benekou, Giorgio Tseberlidis, Alessio Mezzi, Fabiola Liscio, Andrea Candini, Giampiero Ruani, Vincenzo Palermo, Francesco Maccherozzi, Maurizio Acciarri, Enrico Berretti, Carlo Santoro, Alessandro Lavacchi, Massimiliano Cavallini
{"title":"Tuning Electronic and Functional Properties in Defected MoS<sub>2</sub> Films by Surface Patterning of Sulphur Atomic Vacancies.","authors":"Denis Gentili, Gabriele Calabrese, Eugenio Lunedei, Francesco Borgatti, Seyed A Mirshokraee, Vasiliki Benekou, Giorgio Tseberlidis, Alessio Mezzi, Fabiola Liscio, Andrea Candini, Giampiero Ruani, Vincenzo Palermo, Francesco Maccherozzi, Maurizio Acciarri, Enrico Berretti, Carlo Santoro, Alessandro Lavacchi, Massimiliano Cavallini","doi":"10.1002/smtd.202401486","DOIUrl":null,"url":null,"abstract":"<p><p>Defects are inherent in transition metal dichalcogenides and significantly affect their chemical and physical properties. In this study, surface defect electrochemical nanopatterning is proposed as a promising method to tune in a controlled manner the electronic and functional properties of defective MoS₂ thin films. Using parallel electrochemical nanolithography, MoS₂ thin films are patterned, creating sulphur vacancy-rich active zones alternated with defect-free regions over a centimetre scale area, with sub-micrometre spatial resolution. The patterned films display tailored optical and electronic properties due to the formation of sulphur vacancy-rich areas. Moreover, the effectiveness of defect nanopatterning in tuning functional properties is demonstrated by studying the electrocatalytic activity for the hydrogen evolution reaction.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401486"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401486","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Defects are inherent in transition metal dichalcogenides and significantly affect their chemical and physical properties. In this study, surface defect electrochemical nanopatterning is proposed as a promising method to tune in a controlled manner the electronic and functional properties of defective MoS₂ thin films. Using parallel electrochemical nanolithography, MoS₂ thin films are patterned, creating sulphur vacancy-rich active zones alternated with defect-free regions over a centimetre scale area, with sub-micrometre spatial resolution. The patterned films display tailored optical and electronic properties due to the formation of sulphur vacancy-rich areas. Moreover, the effectiveness of defect nanopatterning in tuning functional properties is demonstrated by studying the electrocatalytic activity for the hydrogen evolution reaction.

通过硫原子空位的表面图案化调谐缺陷 MoS2 薄膜的电子和功能特性。
缺陷是过渡金属二钴化物的固有特性,会对其化学和物理特性产生重大影响。本研究提出了表面缺陷电化学纳米图案化技术,将其作为以可控方式调节有缺陷 MoS₂薄膜的电子和功能特性的一种可行方法。利用平行电化学纳米光刻技术,对 MoS₂ 薄膜进行图案化,在一厘米范围内形成富含硫空位的活性区和无缺陷区,空间分辨率达到亚微米级。由于形成了富含硫空位的区域,图案化薄膜显示出定制的光学和电子特性。此外,通过研究氢进化反应的电催化活性,证明了缺陷纳米图案化在调整功能特性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信