Haitao Xu, Hao Zhang, Yan Luo, Jingzhe Zhao, Feng Li
{"title":"NH<sub>4</sub>Cl-Assisted Electrosynthesis of P-Doped Co(OH)<sub>2</sub> Nanosheet on Cu<sub>2</sub>S Hollow Nanotube Arrays for Glycerol Electrooxidation.","authors":"Haitao Xu, Hao Zhang, Yan Luo, Jingzhe Zhao, Feng Li","doi":"10.1002/smtd.202401379","DOIUrl":null,"url":null,"abstract":"<p><p>The glycerol oxidation reaction (GOR) for producing high-value-added organic compounds is of great research interest due to its potential in alleviating the energy crisis. Herein, a facile NH<sub>4</sub>Cl-assisted electrodeposition strategy is reported to fabricate 3D nano-forest array-like hollow nanostructures. The hierarchical heterojunction by combining phosphorus doping Co(OH)<sub>2</sub> nanosheets with Cu<sub>2</sub>S nanotube arrays (P-Co(OH)<sub>2</sub>@Cu<sub>2</sub>S NTs/CF) is developed to realize the optimization on GOR. The optimized P-Co(OH)<sub>2</sub>@Cu<sub>2</sub>S NTs/CF catalyst exhibits an exceptional activity with a formate Faradaic efficiency (FE) of 97.40% at a potential of 1.30 V (vs RHE). The experimental results indicate that this unique hollow nano-forest structure, grown on a conductive support, can expose more active sites and facilitate electron transfer, thereby demonstrating excellent GOR performance. This work provides new opportunities for the design of electrocatalysts of high-activity and low-cost hollow heterostructure electrocatalysts for glycerol electrooxidation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401379"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401379","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The glycerol oxidation reaction (GOR) for producing high-value-added organic compounds is of great research interest due to its potential in alleviating the energy crisis. Herein, a facile NH4Cl-assisted electrodeposition strategy is reported to fabricate 3D nano-forest array-like hollow nanostructures. The hierarchical heterojunction by combining phosphorus doping Co(OH)2 nanosheets with Cu2S nanotube arrays (P-Co(OH)2@Cu2S NTs/CF) is developed to realize the optimization on GOR. The optimized P-Co(OH)2@Cu2S NTs/CF catalyst exhibits an exceptional activity with a formate Faradaic efficiency (FE) of 97.40% at a potential of 1.30 V (vs RHE). The experimental results indicate that this unique hollow nano-forest structure, grown on a conductive support, can expose more active sites and facilitate electron transfer, thereby demonstrating excellent GOR performance. This work provides new opportunities for the design of electrocatalysts of high-activity and low-cost hollow heterostructure electrocatalysts for glycerol electrooxidation.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.