Highly Active NiRu/C Cathode Catalyst Synthesized by Displacement Reaction for Anion Exchange Membrane Water Electrolysis.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Stephan Ruck, Andreas Hutzler, Simon Thiele, Chuyen van Pham
{"title":"Highly Active NiRu/C Cathode Catalyst Synthesized by Displacement Reaction for Anion Exchange Membrane Water Electrolysis.","authors":"Stephan Ruck, Andreas Hutzler, Simon Thiele, Chuyen van Pham","doi":"10.1002/smtd.202401179","DOIUrl":null,"url":null,"abstract":"<p><p>Anion exchange membrane water electrolysis (AEMWE) is highly promising for cost-effective green hydrogen production due to its basic operating conditions facilitating the use of non-noble catalysts. While non-noble Ni/Fe-based catalysts are utilized at the anode, its cathode catalyst still requires precious Pt. Due to the high cost of Pt and the sluggish hydrogen evolution reaction (HER) at the cathode in basic conditions, developing alternative catalysts to replace Pt is highly important. Here, a synthesis procedure for a Ru-based catalyst is reported and its high activity toward the HER in alkaline media is demonstrated in both half-cell and single-cell tests. The catalyst is synthesized in a two-step approach. A highly dispersed Ni catalyst is prepared on carbon support in the first step. In the second step, Ru is deposited on its surface using a galvanic displacement reaction. The uniqueness of this method is that Ru is deposited over the entire electrically conductive surface, resulting in an isotropic and homogeneous Ru distribution within the catalyst powder. It is demonstrated that this material remarkably outperforms state-of-the-art Pt/C catalysts in half-cell and single-cell tests. The single cell only requires 1.73 V at 1 A cm<sup>-2</sup> with an overall PGM content of 0.05 mg cm<sup>-2</sup>.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401179"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401179","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membrane water electrolysis (AEMWE) is highly promising for cost-effective green hydrogen production due to its basic operating conditions facilitating the use of non-noble catalysts. While non-noble Ni/Fe-based catalysts are utilized at the anode, its cathode catalyst still requires precious Pt. Due to the high cost of Pt and the sluggish hydrogen evolution reaction (HER) at the cathode in basic conditions, developing alternative catalysts to replace Pt is highly important. Here, a synthesis procedure for a Ru-based catalyst is reported and its high activity toward the HER in alkaline media is demonstrated in both half-cell and single-cell tests. The catalyst is synthesized in a two-step approach. A highly dispersed Ni catalyst is prepared on carbon support in the first step. In the second step, Ru is deposited on its surface using a galvanic displacement reaction. The uniqueness of this method is that Ru is deposited over the entire electrically conductive surface, resulting in an isotropic and homogeneous Ru distribution within the catalyst powder. It is demonstrated that this material remarkably outperforms state-of-the-art Pt/C catalysts in half-cell and single-cell tests. The single cell only requires 1.73 V at 1 A cm-2 with an overall PGM content of 0.05 mg cm-2.

通过置换反应合成用于阴离子交换膜水电解的高活性 NiRu/C 阴极催化剂。
阴离子交换膜水电解法(AEMWE)的基本操作条件有利于使用非贵金属催化剂,因此极有希望实现经济高效的绿色制氢。虽然阳极使用了非贵金属镍/铁基催化剂,但其阴极催化剂仍然需要贵金属铂。由于铂的高成本以及在基本条件下阴极氢进化反应(HER)的迟缓,开发替代铂的催化剂非常重要。本文报告了一种 Ru 基催化剂的合成过程,并在半电池和单电池测试中证明了它在碱性介质中的高氢化反应活性。该催化剂采用两步法合成。第一步,在碳载体上制备高度分散的镍催化剂。在第二步中,利用电化学置换反应在其表面沉积 Ru。这种方法的独特之处在于 Ru 沉积在整个导电表面,从而在催化剂粉末中形成各向同性的均匀 Ru 分布。实验证明,这种材料在半电池和单电池测试中的性能明显优于最先进的 Pt/C 催化剂。单电池在 1 A cm-2 的电压下仅需 1.73 V,PGM 总含量为 0.05 mg cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信