{"title":"The PtobZIP55-PtoMYB170 module regulates the wood anatomical and chemical properties of Populus tomentosa in acclimation to low nitrogen availability.","authors":"Jiangting Wu, Shurong Deng, Yang Wang, Chenlin Jia, Jia Wei, Mengyan Zhou, Dongyue Zhu, Zhuorong Li, Payam Fayyaz, Zhi-Bin Luo, Jing Zhou, Wenguang Shi","doi":"10.1111/jipb.13804","DOIUrl":null,"url":null,"abstract":"<p><p>Poplar plantations are often established on nitrogen-poor land, and poplar growth and wood formation are constrained by low nitrogen (LN) availability. However, the molecular mechanisms by which specific genes regulate wood formation in acclimation to LN availability remain unclear. Here, we report a previously unrecognized module, basic region/leucine zipper 55 (PtobZIP55)-PtoMYB170, which regulates the wood formation of Populus tomentosa in acclimation to LN availability. PtobZIP55 was highly expressed in poplar wood and induced by LN. Altered wood anatomical properties and increased lignification were detected in PtobZIP55-overexpressing poplars, whereas the opposite results were detected in PtobZIP55-knockout poplars. Molecular and transgenic analyses revealed that PtobZIP55 directly binds to the promoter sequence of PtoMYB170 to activate its transcription. The phenotypes of PtoMYB170 transgenic poplars were similar to those of PtobZIP55 transgenic poplars under LN conditions. Further molecular analyses revealed that PtoMYB170 directly bound the promoter sequences of lignin biosynthetic genes to activate their transcription to increase lignin concentrations in LN-treated poplar wood. These results suggest that PtobZIP55 activates PtoMYB170 transcription, which in turn positively regulates lignin biosynthetic genes, increasing lignin deposition in the wood of P. tomentosa in the context of acclimation to LN availability.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13804","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Poplar plantations are often established on nitrogen-poor land, and poplar growth and wood formation are constrained by low nitrogen (LN) availability. However, the molecular mechanisms by which specific genes regulate wood formation in acclimation to LN availability remain unclear. Here, we report a previously unrecognized module, basic region/leucine zipper 55 (PtobZIP55)-PtoMYB170, which regulates the wood formation of Populus tomentosa in acclimation to LN availability. PtobZIP55 was highly expressed in poplar wood and induced by LN. Altered wood anatomical properties and increased lignification were detected in PtobZIP55-overexpressing poplars, whereas the opposite results were detected in PtobZIP55-knockout poplars. Molecular and transgenic analyses revealed that PtobZIP55 directly binds to the promoter sequence of PtoMYB170 to activate its transcription. The phenotypes of PtoMYB170 transgenic poplars were similar to those of PtobZIP55 transgenic poplars under LN conditions. Further molecular analyses revealed that PtoMYB170 directly bound the promoter sequences of lignin biosynthetic genes to activate their transcription to increase lignin concentrations in LN-treated poplar wood. These results suggest that PtobZIP55 activates PtoMYB170 transcription, which in turn positively regulates lignin biosynthetic genes, increasing lignin deposition in the wood of P. tomentosa in the context of acclimation to LN availability.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.