Larissa Della Vedova, Islam Husain, Yan-Hong Wang, Hari Babu Kothapalli, Francesca Gado, Giovanna Baron, Simone Manzi, Paolo Morazzoni, Giancarlo Aldini, Ikhals A Khan
{"title":"Pre-ADMET studies of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, the bioactive intestinal metabolite of proanthocyanidins.","authors":"Larissa Della Vedova, Islam Husain, Yan-Hong Wang, Hari Babu Kothapalli, Francesca Gado, Giovanna Baron, Simone Manzi, Paolo Morazzoni, Giancarlo Aldini, Ikhals A Khan","doi":"10.1002/ardp.202400575","DOIUrl":null,"url":null,"abstract":"<p><p>5-(3',4'-Dihydroxyphenyl)-γ-valerolactone (VL) is a bioactive metabolite resulting from the gut microbial metabolism of proanthocyanidins and flavonoids, known for its health-promoting effects, including antidiabetic and anti-inflammatory activities. Although VL has been observed in different in vivo studies, its pre-absorption, distribution, metabolism, excretion, toxicity (ADMET) properties have rarely been investigated. This study aims to address this gap by evaluating the pre-ADMET properties of VL for the first time. Also, the understanding of these properties is significant for correlating the encountered activities to this metabolite. In vitro absorption studies revealed that VL is rapidly metabolized and absorbed as its sulfate phase II conjugate (valerolactone sulfate), which enters systemic circulation and mildly activates the Breast Cancer Resistance Protein efflux transporter. In human S9 liver fraction, a mixture of liver enzymes used to simulate in vivo liver metabolism, VL is metabolized into glucuronic phase II conjugates (valerolactone glucuronide 1 [VLG1] and 2 [VLG2]) with a half-life of 8.72 min and an 80% conversion rate. In human liver microsomes, VL is metabolized at a slower rate (half-life of 23.08 min), suggesting that oxidative metabolism is secondary. Additionally, VL did not activate the pregnane X receptor or inhibit Cytochrome P3A4 (CYP3A4) and Cytochrome P1A2 (CYP1A2) enzymes, indicating no risk of herb-drug interactions with coadministered prescription drugs.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":" ","pages":"e2400575"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ardp.202400575","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
5-(3',4'-Dihydroxyphenyl)-γ-valerolactone (VL) is a bioactive metabolite resulting from the gut microbial metabolism of proanthocyanidins and flavonoids, known for its health-promoting effects, including antidiabetic and anti-inflammatory activities. Although VL has been observed in different in vivo studies, its pre-absorption, distribution, metabolism, excretion, toxicity (ADMET) properties have rarely been investigated. This study aims to address this gap by evaluating the pre-ADMET properties of VL for the first time. Also, the understanding of these properties is significant for correlating the encountered activities to this metabolite. In vitro absorption studies revealed that VL is rapidly metabolized and absorbed as its sulfate phase II conjugate (valerolactone sulfate), which enters systemic circulation and mildly activates the Breast Cancer Resistance Protein efflux transporter. In human S9 liver fraction, a mixture of liver enzymes used to simulate in vivo liver metabolism, VL is metabolized into glucuronic phase II conjugates (valerolactone glucuronide 1 [VLG1] and 2 [VLG2]) with a half-life of 8.72 min and an 80% conversion rate. In human liver microsomes, VL is metabolized at a slower rate (half-life of 23.08 min), suggesting that oxidative metabolism is secondary. Additionally, VL did not activate the pregnane X receptor or inhibit Cytochrome P3A4 (CYP3A4) and Cytochrome P1A2 (CYP1A2) enzymes, indicating no risk of herb-drug interactions with coadministered prescription drugs.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.