Fluorine-Induced Lattice Oxygen Participation in 2D Layered Double Hydroxide/MXene Hybrids for Efficient Oxygen Evolution.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Advanced Science Pub Date : 2025-01-01 Epub Date: 2024-11-11 DOI:10.1002/advs.202410812
Chengang Pei, Min-Cheol Kim, Unbeom Baeck, Won Tae Hong, Jong Hun Kim, Hyungu Han, Jaekyum Kim, Sung Min Cho, Xu Yu, Jongwook Park, Ho Seok Park, Jung Kyu Kim
{"title":"Fluorine-Induced Lattice Oxygen Participation in 2D Layered Double Hydroxide/MXene Hybrids for Efficient Oxygen Evolution.","authors":"Chengang Pei, Min-Cheol Kim, Unbeom Baeck, Won Tae Hong, Jong Hun Kim, Hyungu Han, Jaekyum Kim, Sung Min Cho, Xu Yu, Jongwook Park, Ho Seok Park, Jung Kyu Kim","doi":"10.1002/advs.202410812","DOIUrl":null,"url":null,"abstract":"<p><p>In oxygen evolution reaction (OER), the participation of lattice oxygen can break the limitation of adsorption evolution mechanism, but the activation of lattice oxygen remains a critical challenge. Herein, a surface fluorinated highly active 2D/2D FeNi layered double hydroxide/MXene (F-LDH/MX) is demonstrated, boosting OER with the enhanced lattice-oxygen-mediated path. The introduction of fluorine promotes the self-evolution of catalyst in an alkaline environment, even without an external current. It further accelerates the formation of active metal oxyhydroxides with abundant oxygen vacancies under the operating potential. The introduced oxygen vacancy activates the lattice oxygen, increasing the proportion of lattice oxygen mechanism in OER. Owing to the synergistic effects of the 2D/2D hierarchical structure and the modulated active surface, F-LDH/MX possesses excellent electrochemical performances, including a low overpotential of 251 mV at 10 mA cm<sup>-2</sup>, a low Tafel slope of 40.28 mV dec<sup>-1</sup>, and robust stability. The water electrolyzer system with F-LDH/MX as the anode offers the benchmark current density at a low cell voltage of 1.53 V, while the Zn-air battery with F-LDH/MX as the air electrode exhibits a higher power density of 75.43 mW cm<sup>-2</sup>. This study presents a promising strategy to design highly active electrocatalysts for energy conversion and storage.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410812"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410812","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In oxygen evolution reaction (OER), the participation of lattice oxygen can break the limitation of adsorption evolution mechanism, but the activation of lattice oxygen remains a critical challenge. Herein, a surface fluorinated highly active 2D/2D FeNi layered double hydroxide/MXene (F-LDH/MX) is demonstrated, boosting OER with the enhanced lattice-oxygen-mediated path. The introduction of fluorine promotes the self-evolution of catalyst in an alkaline environment, even without an external current. It further accelerates the formation of active metal oxyhydroxides with abundant oxygen vacancies under the operating potential. The introduced oxygen vacancy activates the lattice oxygen, increasing the proportion of lattice oxygen mechanism in OER. Owing to the synergistic effects of the 2D/2D hierarchical structure and the modulated active surface, F-LDH/MX possesses excellent electrochemical performances, including a low overpotential of 251 mV at 10 mA cm-2, a low Tafel slope of 40.28 mV dec-1, and robust stability. The water electrolyzer system with F-LDH/MX as the anode offers the benchmark current density at a low cell voltage of 1.53 V, while the Zn-air battery with F-LDH/MX as the air electrode exhibits a higher power density of 75.43 mW cm-2. This study presents a promising strategy to design highly active electrocatalysts for energy conversion and storage.

二维层状双氢氧化物/二甲苯杂化物中的氟诱导晶格氧参与,以实现高效氧进化。
在氧进化反应(OER)中,晶格氧的参与可以打破吸附进化机制的限制,但晶格氧的活化仍是一个关键挑战。本文展示了一种表面氟化的高活性二维/二维铁镍层状双氢氧化物/MXene(F-LDH/MX),通过增强的晶格氧介导路径促进了氧演化反应。即使没有外加电流,氟的引入也能促进催化剂在碱性环境中的自我演化。在工作电位下,它进一步加速了具有丰富氧空位的活性金属氧氢氧化物的形成。引入的氧空位激活了晶格氧,增加了 OER 中晶格氧机制的比例。由于二维/二维分层结构和调制活性表面的协同作用,F-LDH/MX 具有优异的电化学性能,包括在 10 mA cm-2 条件下 251 mV 的低过电位、40.28 mV dec-1 的低塔菲尔斜率和稳健的稳定性。以 F-LDH/MX 为阳极的水电解槽系统在 1.53 V 的低电池电压下提供了基准电流密度,而以 F-LDH/MX 为空气电极的锌空气电池则表现出 75.43 mW cm-2 的较高功率密度。这项研究为设计用于能量转换和储存的高活性电催化剂提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信