Alginate/Chitosan Complex Fibers Reinforcement and Their Mechanical Transition Continuum With Water Uptake Increasing.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Hao Huang, Zexin Liu, Hanxin Jian, Yuan Yao, Wenjuan Tan, Shuguang Yang
{"title":"Alginate/Chitosan Complex Fibers Reinforcement and Their Mechanical Transition Continuum With Water Uptake Increasing.","authors":"Hao Huang, Zexin Liu, Hanxin Jian, Yuan Yao, Wenjuan Tan, Shuguang Yang","doi":"10.1002/marc.202400735","DOIUrl":null,"url":null,"abstract":"<p><p>Living tissues span a remarkable spectrum of modulus ranging from the level of Pa to GPa in a water-rich environment. Constructing soft and hard materials that match the mechanics of tissues and researching mechanical transition in water, are beneficial for their biological applications. Here, using polyelectrolyte complex fiber as a model system and reinforcing the fiber by stepwisely introducing additional coordination and covalent bonds, this investigated that the water effect on mechanical transition behaviors. Alginate/chitosan fiber (AC fiber) has a single electrostatic bond and shows continuous mechanical transition containing a glassy state, rubbery state, and terminal relaxation (initial modulus lower than 10 MPa) in aqueous solution. Alginate/chitosan/calcium fiber (ACC fiber) has both electrostatic and coordination bonds, which shows the behavior of hard rubber (initial modulus 100 MPa) when water reaches equilibrium. Alginate/chitosan/calcium/polydopamine fiber (ACCP fiber) with triple bonds, including electrostatic, coordination, and covalent bonds, exhibits the behavior like ductile plastics in aqueous solution (initial modulus 1000 MPa). This work not only provides important insight into the toughening mechanism of polyelectrolyte complexes in water but also contributes to the preparation of tissue adaptive implantations.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400735"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400735","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Living tissues span a remarkable spectrum of modulus ranging from the level of Pa to GPa in a water-rich environment. Constructing soft and hard materials that match the mechanics of tissues and researching mechanical transition in water, are beneficial for their biological applications. Here, using polyelectrolyte complex fiber as a model system and reinforcing the fiber by stepwisely introducing additional coordination and covalent bonds, this investigated that the water effect on mechanical transition behaviors. Alginate/chitosan fiber (AC fiber) has a single electrostatic bond and shows continuous mechanical transition containing a glassy state, rubbery state, and terminal relaxation (initial modulus lower than 10 MPa) in aqueous solution. Alginate/chitosan/calcium fiber (ACC fiber) has both electrostatic and coordination bonds, which shows the behavior of hard rubber (initial modulus 100 MPa) when water reaches equilibrium. Alginate/chitosan/calcium/polydopamine fiber (ACCP fiber) with triple bonds, including electrostatic, coordination, and covalent bonds, exhibits the behavior like ductile plastics in aqueous solution (initial modulus 1000 MPa). This work not only provides important insight into the toughening mechanism of polyelectrolyte complexes in water but also contributes to the preparation of tissue adaptive implantations.

海藻酸盐/壳聚糖复合纤维增强及其随着吸水率增加而产生的机械转变连续性
在富水环境中,生物组织的模量范围从帕到 GPa 不等。构建与组织力学相匹配的软硬材料并研究其在水中的力学转变,有利于其生物应用。本文以聚电解质复合纤维为模型系统,通过逐步引入额外的配位键和共价键来增强纤维,研究了水对力学转变行为的影响。海藻酸/壳聚糖纤维(AC 纤维)具有单静电键,在水溶液中表现出连续的力学转变,包括玻璃态、橡胶态和末端松弛(初始模量低于 10 兆帕)。海藻酸盐/壳聚糖/钙纤维(ACC 纤维)同时具有静电键和配位键,在水达到平衡时表现为硬橡胶(初始模量为 100 兆帕)。海藻酸/壳聚糖/钙/多巴胺纤维(ACCP 纤维)具有三重键,包括静电键、配位键和共价键,在水溶液中表现出类似韧性塑料的行为(初始模量为 1000 兆帕)。这项工作不仅为了解聚电解质复合物在水中的增韧机理提供了重要依据,而且有助于制备组织适应性植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信