Automated and Interpretable Detection of Hippocampal Sclerosis in Temporal Lobe Epilepsy: AID-HS.

IF 8.1 1区 医学 Q1 CLINICAL NEUROLOGY
Mathilde Ripart, Jordan DeKraker, Maria H Eriksson, Rory J Piper, Siby Gopinath, Harilal Parasuram, Jiajie Mo, Marcus Likeman, Georgian Ciobotaru, Philip Sequeiros-Peggs, Khalid Hamandi, Hua Xie, Nathan T Cohen, Ting-Yu Su, Ryuzaburo Kochi, Irene Wang, Gonzalo M Rojas-Costa, Marcelo Gálvez, Costanza Parodi, Antonella Riva, Felice D'Arco, Kshitij Mankad, Chris A Clark, Adrián Valls Carbó, Rafael Toledano, Peter Taylor, Antonio Napolitano, Maria Camilla Rossi-Espagnet, Anna Willard, Benjamin Sinclair, Joshua Pepper, Stefano Seri, Orrin Devinsky, Heath R Pardoe, Gavin P Winston, John S Duncan, Clarissa L Yasuda, Lucas Scárdua-Silva, Lennart Walger, Theodor Rüber, Ali R Khan, Torsten Baldeweg, Sophie Adler, Konrad Wagstyl
{"title":"Automated and Interpretable Detection of Hippocampal Sclerosis in Temporal Lobe Epilepsy: AID-HS.","authors":"Mathilde Ripart, Jordan DeKraker, Maria H Eriksson, Rory J Piper, Siby Gopinath, Harilal Parasuram, Jiajie Mo, Marcus Likeman, Georgian Ciobotaru, Philip Sequeiros-Peggs, Khalid Hamandi, Hua Xie, Nathan T Cohen, Ting-Yu Su, Ryuzaburo Kochi, Irene Wang, Gonzalo M Rojas-Costa, Marcelo Gálvez, Costanza Parodi, Antonella Riva, Felice D'Arco, Kshitij Mankad, Chris A Clark, Adrián Valls Carbó, Rafael Toledano, Peter Taylor, Antonio Napolitano, Maria Camilla Rossi-Espagnet, Anna Willard, Benjamin Sinclair, Joshua Pepper, Stefano Seri, Orrin Devinsky, Heath R Pardoe, Gavin P Winston, John S Duncan, Clarissa L Yasuda, Lucas Scárdua-Silva, Lennart Walger, Theodor Rüber, Ali R Khan, Torsten Baldeweg, Sophie Adler, Konrad Wagstyl","doi":"10.1002/ana.27089","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Hippocampal sclerosis (HS), the most common pathology associated with temporal lobe epilepsy (TLE), is not always visible on magnetic resonance imaging (MRI), causing surgical delays and reduced postsurgical seizure-freedom. We developed an open-source software to characterize and localize HS to aid the presurgical evaluation of children and adults with suspected TLE.</p><p><strong>Methods: </strong>We included a multicenter cohort of 365 participants (154 HS; 90 disease controls; 121 healthy controls). HippUnfold was used to extract morphological surface-based features and volumes of the hippocampus from T1-weighted MRI scans. We characterized pathological hippocampi in patients by comparing them to normative growth charts and analyzing within-subject feature asymmetries. Feature asymmetry scores were used to train a logistic regression classifier to detect and lateralize HS. The classifier was validated on an independent multicenter cohort of 275 patients with HS and 161 healthy and disease controls.</p><p><strong>Results: </strong>HS was characterized by decreased volume, thickness, and gyrification alongside increased mean and intrinsic curvature. The classifier detected 90.1% of unilateral HS patients and lateralized lesions in 97.4%. In patients with MRI-negative histopathologically-confirmed HS, the classifier detected 79.2% (19/24) and lateralized 91.7% (22/24). The model achieved similar performances on the independent cohort, demonstrating its ability to generalize to new data. Individual patient reports contextualize a patient's hippocampal features in relation to normative growth trajectories, visualise feature asymmetries, and report classifier predictions.</p><p><strong>Interpretation: </strong>Automated and Interpretable Detection of Hippocampal Sclerosis (AID-HS) is an open-source pipeline for detecting and lateralizing HS and outputting clinically-relevant reports. ANN NEUROL 2024.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.27089","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Hippocampal sclerosis (HS), the most common pathology associated with temporal lobe epilepsy (TLE), is not always visible on magnetic resonance imaging (MRI), causing surgical delays and reduced postsurgical seizure-freedom. We developed an open-source software to characterize and localize HS to aid the presurgical evaluation of children and adults with suspected TLE.

Methods: We included a multicenter cohort of 365 participants (154 HS; 90 disease controls; 121 healthy controls). HippUnfold was used to extract morphological surface-based features and volumes of the hippocampus from T1-weighted MRI scans. We characterized pathological hippocampi in patients by comparing them to normative growth charts and analyzing within-subject feature asymmetries. Feature asymmetry scores were used to train a logistic regression classifier to detect and lateralize HS. The classifier was validated on an independent multicenter cohort of 275 patients with HS and 161 healthy and disease controls.

Results: HS was characterized by decreased volume, thickness, and gyrification alongside increased mean and intrinsic curvature. The classifier detected 90.1% of unilateral HS patients and lateralized lesions in 97.4%. In patients with MRI-negative histopathologically-confirmed HS, the classifier detected 79.2% (19/24) and lateralized 91.7% (22/24). The model achieved similar performances on the independent cohort, demonstrating its ability to generalize to new data. Individual patient reports contextualize a patient's hippocampal features in relation to normative growth trajectories, visualise feature asymmetries, and report classifier predictions.

Interpretation: Automated and Interpretable Detection of Hippocampal Sclerosis (AID-HS) is an open-source pipeline for detecting and lateralizing HS and outputting clinically-relevant reports. ANN NEUROL 2024.

颞叶癫痫海马硬化的自动和可解释检测:AID-HS.
目的:海马硬化症(HS)是颞叶癫痫(TLE)最常见的相关病理,但在磁共振成像(MRI)上并不总能看懂,导致手术延迟和术后癫痫发作自由度降低。我们开发了一款开源软件来描述和定位HS,以帮助对疑似TLE的儿童和成人进行术前评估:我们纳入了一个由 365 名参与者(154 名 HS;90 名疾病对照;121 名健康对照)组成的多中心队列。HippUnfold用于从T1加权磁共振成像扫描中提取海马的形态表面特征和体积。我们将患者的病理海马与常模生长图进行比较,并分析受试者内部的特征不对称性,从而确定病理海马的特征。特征不对称性得分被用于训练逻辑回归分类器,以检测和侧定HS。该分类器在由 275 名 HS 患者和 161 名健康及疾病对照者组成的独立多中心队列中进行了验证:HS的特征是体积、厚度和回旋减少,同时平均曲率和固有曲率增加。分类器检测出90.1%的单侧HS患者和97.4%的侧位病变。在核磁共振成像阴性、组织病理学确诊的 HS 患者中,分类器检测出 79.2%(19/24)的病变,并对 91.7%(22/24)的病变进行了侧位分类。该模型在独立队列中也取得了类似的表现,证明了其对新数据的归纳能力。患者个人报告将患者的海马特征与正常生长轨迹联系起来,直观显示特征的不对称性,并报告分类器的预测结果:海马硬化症的自动可解读检测(AID-HS)是一个开源管道,用于检测海马硬化症并将其侧向化,同时输出临床相关报告。ann neurol 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Neurology
Annals of Neurology 医学-临床神经学
CiteScore
18.00
自引率
1.80%
发文量
270
审稿时长
3-8 weeks
期刊介绍: Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信