Mira Sundström, Pirkko Kriikku, Ilkka Ojanperä, Carsten Baessmann, Anna Pelander
{"title":"UHPLC-QTOFMS Urine Drug Screening With Dilute-and-Shoot Sample Preparation and Vacuum-Insulated Probe-Heated Electrospray Ionization.","authors":"Mira Sundström, Pirkko Kriikku, Ilkka Ojanperä, Carsten Baessmann, Anna Pelander","doi":"10.1002/dta.3830","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a method for comprehensive urine drug screening by applying dilute-and-shoot extraction and vacuum-insulated probe-heated electrospray ionization with ultra-high performance liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (DS-UHPLC-VIP-HESI-QTOFMS). The method involved five-fold post-hydrolysis dilution of urine samples and chromatography on a C18 UHPLC column prior to QTOFMS analysis. The recently introduced VIP-HESI ion source was chosen due to its enhanced ionization efficiency and compatibility with UHPLC-QTOFMS. Extensive data was acquired in positive ion mode with a low collision energy (7 eV) and an elevated collision energy (30 eV), using the broadband collision-induced dissociation data acquisition scan mode that continuously generated high-resolution and accurate mass for parent and fragment qualifier ions, and parent ion isotopic patterns. Compound identification was performed against an in-house database with 1263 compound entries, using an automated post-run reverse target database search with preset identification criteria. Method validation with 56 different drugs showed acceptable results for the limit of identification (median 5 ng/mL), matrix effects (70-130%), repeatability of retention times (< 1%), mass accuracy (< 1 mDa), as well as for specificity and stability. As compared with an established UHPLC-QTOFMS method relying on solid-phase extraction and conventional electrospray ionization, DS-UHPLC-VIP-HESI-QTOFMS produced comparable results from authentic clinical urine samples for most drugs, but showed clearly improved detectability for pregabalin, gabapentin, and ritalinic acid. We anticipate that the new method will be a step forward for laboratories performing routine urine drug screening due to its fast turnaround time, reduced manual workload, cost efficiency, and broad substance coverage.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a method for comprehensive urine drug screening by applying dilute-and-shoot extraction and vacuum-insulated probe-heated electrospray ionization with ultra-high performance liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (DS-UHPLC-VIP-HESI-QTOFMS). The method involved five-fold post-hydrolysis dilution of urine samples and chromatography on a C18 UHPLC column prior to QTOFMS analysis. The recently introduced VIP-HESI ion source was chosen due to its enhanced ionization efficiency and compatibility with UHPLC-QTOFMS. Extensive data was acquired in positive ion mode with a low collision energy (7 eV) and an elevated collision energy (30 eV), using the broadband collision-induced dissociation data acquisition scan mode that continuously generated high-resolution and accurate mass for parent and fragment qualifier ions, and parent ion isotopic patterns. Compound identification was performed against an in-house database with 1263 compound entries, using an automated post-run reverse target database search with preset identification criteria. Method validation with 56 different drugs showed acceptable results for the limit of identification (median 5 ng/mL), matrix effects (70-130%), repeatability of retention times (< 1%), mass accuracy (< 1 mDa), as well as for specificity and stability. As compared with an established UHPLC-QTOFMS method relying on solid-phase extraction and conventional electrospray ionization, DS-UHPLC-VIP-HESI-QTOFMS produced comparable results from authentic clinical urine samples for most drugs, but showed clearly improved detectability for pregabalin, gabapentin, and ritalinic acid. We anticipate that the new method will be a step forward for laboratories performing routine urine drug screening due to its fast turnaround time, reduced manual workload, cost efficiency, and broad substance coverage.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.