Nucleophilic Sn Seeding and Interface Engineering for Highly Stable Sodium Metal Batteries.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-15 DOI:10.1002/smll.202406325
Zeeshan Ali, Muhammad Burhan Shafqat, Muhammad Tayyab Ahsan, Shibo Li, Wanting Zhao, Yanglong Hou
{"title":"Nucleophilic Sn Seeding and Interface Engineering for Highly Stable Sodium Metal Batteries.","authors":"Zeeshan Ali, Muhammad Burhan Shafqat, Muhammad Tayyab Ahsan, Shibo Li, Wanting Zhao, Yanglong Hou","doi":"10.1002/smll.202406325","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium metal is a promising anode material for energy storage beyond lithium-ion batteries due to its abundance and low cost. However, the uncontrolled growth of dendrites and associated safety concerns have limited the practical application of sodium metal batteries (SMBs). By embedding nucleophilic tin seeds in a free-standing carbon film (FSF), here, an effective solution is developed to stabilize the sodium metal anode. The highly conductive and porous carbon matrix, intimately embedded with abundant Sn seeds (C@Sn), enables remarkably uniform sodium plating, and provides long-term stability for SMBs. Mechanistic studies confirm the formation of an Na─Sn alloy on interface which helps to lower the nucleation barrier for sodium plating. Hence, symmetric sodium cells equipped with C@Sn FSFs can sustain uninterrupted sodium plating and stripping for almost 2600 h at a high areal capacity of 4 mA h cm<sup>-2</sup>, achieving an average Coulombic efficiency (CE) of 99.88%. In addition, full cells prepared with commercial Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode and C@Sn-FSFs anode deliver remarkable cycling (90 mA h g<sup>-1</sup> beyond 1300 cycles at 1C) and excellent rate performance. This ingenious strategy of embedding Sn particles within a carbon matrix offers an overall compelling solution to enhance the longevity of sodium anodes.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2406325"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal is a promising anode material for energy storage beyond lithium-ion batteries due to its abundance and low cost. However, the uncontrolled growth of dendrites and associated safety concerns have limited the practical application of sodium metal batteries (SMBs). By embedding nucleophilic tin seeds in a free-standing carbon film (FSF), here, an effective solution is developed to stabilize the sodium metal anode. The highly conductive and porous carbon matrix, intimately embedded with abundant Sn seeds (C@Sn), enables remarkably uniform sodium plating, and provides long-term stability for SMBs. Mechanistic studies confirm the formation of an Na─Sn alloy on interface which helps to lower the nucleation barrier for sodium plating. Hence, symmetric sodium cells equipped with C@Sn FSFs can sustain uninterrupted sodium plating and stripping for almost 2600 h at a high areal capacity of 4 mA h cm-2, achieving an average Coulombic efficiency (CE) of 99.88%. In addition, full cells prepared with commercial Na3V2(PO4)3 cathode and C@Sn-FSFs anode deliver remarkable cycling (90 mA h g-1 beyond 1300 cycles at 1C) and excellent rate performance. This ingenious strategy of embedding Sn particles within a carbon matrix offers an overall compelling solution to enhance the longevity of sodium anodes.

Abstract Image

用于高稳定性金属钠电池的亲核 Sn Seeding 和界面工程。
金属钠因其丰富的资源和低廉的成本,成为锂离子电池以外一种前景广阔的储能负极材料。然而,树枝状突起的不可控生长和相关的安全问题限制了金属钠电池(SMB)的实际应用。本文通过在独立碳膜(FSF)中嵌入亲核锡种子,开发出了一种稳定钠金属阳极的有效解决方案。高导电性的多孔碳基质与丰富的锡种子(C@Sn)紧密嵌入,使钠电镀非常均匀,并为 SMB 提供了长期稳定性。机理研究证实,界面上形成的 Na─Sn 合金有助于降低钠电镀的成核障碍。因此,装有 C@Sn FSF 的对称钠电池可以在 4 mA h cm-2 的高电容下持续近 2600 小时不间断地进行钠电镀和剥离,平均库仑效率(CE)达到 99.88%。此外,使用商用 Na3V2(PO4)3 阴极和 C@Sn-FSFs 阳极制备的全电池具有显著的循环性能(在 1C 条件下循环 1300 次后达到 90 mA h g-1)和出色的速率性能。这种在碳基质中嵌入锡颗粒的巧妙策略为提高钠阳极的寿命提供了一种令人信服的整体解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信