Kyung-Shik Kim, Jin-Sung Park, Young-Chul Yoon, Jinwoo Kim, Ju Li, Bilge Yildiz, Cemal Cem Tasan
{"title":"Remove hydrogen and store it too: an acid-in-clay based electro-chemical solution.","authors":"Kyung-Shik Kim, Jin-Sung Park, Young-Chul Yoon, Jinwoo Kim, Ju Li, Bilge Yildiz, Cemal Cem Tasan","doi":"10.1039/d4mh01071j","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting hydrogen from metallic components can open up a new pathway for preventing hydrogen embrittlement. To this end, we propose an electrochemically driven, all-solid method for hydrogen control, capable of both extracting and storing hydrogen simultaneously. In this approach, we employ acid-in-clay as a proton conducting electrolyte at room temperature. Through this electrochemical treatment, hydrogen is efficiently extracted from pre-charged steels, thereby restoring their tensile properties and preventing embrittlement. Moreover, it has been confirmed that the extracted hydrogen can be efficiently collected at the counter electrode, demonstrating the significant advantages of the process.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01071j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting hydrogen from metallic components can open up a new pathway for preventing hydrogen embrittlement. To this end, we propose an electrochemically driven, all-solid method for hydrogen control, capable of both extracting and storing hydrogen simultaneously. In this approach, we employ acid-in-clay as a proton conducting electrolyte at room temperature. Through this electrochemical treatment, hydrogen is efficiently extracted from pre-charged steels, thereby restoring their tensile properties and preventing embrittlement. Moreover, it has been confirmed that the extracted hydrogen can be efficiently collected at the counter electrode, demonstrating the significant advantages of the process.