Precise weight tuning in quantum dot-based resistive-switching memory for neuromorphic systems.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gyeongpyo Kim, Doheon Yoo, Hyojin So, Seoyoung Park, Sungjoon Kim, Min-Jae Choi, Sungjun Kim
{"title":"Precise weight tuning in quantum dot-based resistive-switching memory for neuromorphic systems.","authors":"Gyeongpyo Kim, Doheon Yoo, Hyojin So, Seoyoung Park, Sungjoon Kim, Min-Jae Choi, Sungjun Kim","doi":"10.1039/d4mh01182a","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO<sub>2</sub>-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO<sub>2</sub> layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO<sub>2</sub>/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01182a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO2-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO2 layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO2/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.

用于神经形态系统的基于量子点的电阻开关存储器的精确权重调整。
本研究在基于 InGaP 量子点(QDs)/HfO2 的忆阻器器件中实现了非易失性双极电阻开关和突触仿真行为。首先,通过高分辨率透射电子显微镜和分光光度分析研究了 InGaP 量子点的物理和化学特性。通过对比实验证明,HfO2 层改善了电阻开关特性的变化。此外,Al/QDs/HfO2/ITO 器件具有可逆开关性能和出色的数据保持能力。纳米级 InGaP QDs 提供的阱和量子隧穿效应可以解释这种快速开关速度。此外,当器件暴露在紫外线下进行低功耗开关时,工作电压会降低。神经形态系统仿真了生物突触的特征,如依赖于尖峰计时的可塑性。最后,利用经过验证的算法方法,增量阶跃脉冲实现了四位状态(16 个状态),显著提高了神经形态系统的推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信