Manipulating key intermediates and suppressing the hydrogen evolution reaction via dual roles of Bi for high-efficiency nitrate to ammonia and energy conversion.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunming Yang, Tingting Wei, Chuantao Wang, Feng Yue, Xiang Li, Huijuan Pang, Xueyan Zheng, Yantu Zhang, Feng Fu
{"title":"Manipulating key intermediates and suppressing the hydrogen evolution reaction <i>via</i> dual roles of Bi for high-efficiency nitrate to ammonia and energy conversion.","authors":"Chunming Yang, Tingting Wei, Chuantao Wang, Feng Yue, Xiang Li, Huijuan Pang, Xueyan Zheng, Yantu Zhang, Feng Fu","doi":"10.1039/d4mh01133c","DOIUrl":null,"url":null,"abstract":"<p><p>The nitrate reduction reaction (NO<sub>3</sub>RR) is a promising technology for simultaneous treatment of NO<sub>3</sub><sup>-</sup> wastewater and synthetic ammonia. However, the NO<sub>3</sub>RR involves multiple electron and proton transfer processes, and the ammonia selectivity and yield are highly susceptible to the evolution of key intermediate (*NO<sub>2</sub>) and the competing hydrogen evolution reaction (HER). In this study, bismuth (Bi), with a high hydrogen overpotential, is used as an inhibitor of the HER. Meanwhile, the Bi doping CoS<sub>2</sub> (Bi-CoS<sub>2</sub>) can refine the d-band center of CoS<sub>2</sub>, which optimizes the adsorption of *NO<sub>2</sub>, reduces the accumulation of NO<sub>2</sub><sup>-</sup> on the surface of the catalyst and then releases more active sites, thereby enhancing the NO<sub>3</sub>RR activity. This viewpoint is verified by experimental results, density functional theory (DFT) calculations and <i>in situ</i> Raman. Benefitting from the dual roles of Bi, Bi-CoS<sub>2</sub> exhibits a highest NH<sub>3</sub> Faraday Faradaic efficiency (FE) of 87.18%, an ammonia yield rate of 944.64 μg h<sup>-1</sup> cm<sup>-1</sup> and long-term stability at -0.2 V <i>versus</i> the reversible hydrogen electrode (RHE). Furthermore, an assembled Zn-NO<sub>3</sub><sup>-</sup> battery can reach a maximum power density of 16.3 mW cm<sup>-2</sup> and high FE<sub>NH<sub>3</sub></sub> of 95.76%, providing a high-efficiency multifunctional system for nitrate to ammonia and energy conversion.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01133c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The nitrate reduction reaction (NO3RR) is a promising technology for simultaneous treatment of NO3- wastewater and synthetic ammonia. However, the NO3RR involves multiple electron and proton transfer processes, and the ammonia selectivity and yield are highly susceptible to the evolution of key intermediate (*NO2) and the competing hydrogen evolution reaction (HER). In this study, bismuth (Bi), with a high hydrogen overpotential, is used as an inhibitor of the HER. Meanwhile, the Bi doping CoS2 (Bi-CoS2) can refine the d-band center of CoS2, which optimizes the adsorption of *NO2, reduces the accumulation of NO2- on the surface of the catalyst and then releases more active sites, thereby enhancing the NO3RR activity. This viewpoint is verified by experimental results, density functional theory (DFT) calculations and in situ Raman. Benefitting from the dual roles of Bi, Bi-CoS2 exhibits a highest NH3 Faraday Faradaic efficiency (FE) of 87.18%, an ammonia yield rate of 944.64 μg h-1 cm-1 and long-term stability at -0.2 V versus the reversible hydrogen electrode (RHE). Furthermore, an assembled Zn-NO3- battery can reach a maximum power density of 16.3 mW cm-2 and high FENH3 of 95.76%, providing a high-efficiency multifunctional system for nitrate to ammonia and energy conversion.

通过 Bi 的双重作用操纵关键中间体并抑制氢进化反应,实现高效硝酸到氨和能量转换。
硝酸盐还原反应(NO3RR)是同时处理含 NO3 废水和合成氨的一项前景广阔的技术。然而,NO3RR 涉及多个电子和质子转移过程,氨的选择性和产率极易受到关键中间产物(*NO2)和竞争性氢进化反应(HER)的影响。在本研究中,铋(Bi)具有很高的氢过电位,被用作氢进化反应的抑制剂。同时,Bi 掺杂 CoS2(Bi-CoS2)可以细化 CoS2 的 d 带中心,从而优化对 *NO2 的吸附,减少 NO2- 在催化剂表面的积累,进而释放出更多的活性位点,从而提高 NO3RR 活性。实验结果、密度泛函理论(DFT)计算和原位拉曼都验证了这一观点。得益于铋的双重作用,Bi-CoS2 的 NH3 法拉第效率(FE)高达 87.18%,氨气产率为 944.64 μg h-1 cm-1,并且在-0.2 V 的电压下与可逆氢电极(RHE)相比具有长期稳定性。此外,组装后的 Zn-NO3- 电池最大功率密度可达 16.3 mW cm-2,FENH3 高达 95.76%,为硝酸制氨和能量转换提供了一个高效多功能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信