Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision-Enabled Guidance System for Personalized Wound Healing.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jihyun Kim, Seol-Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra, Yeongseok Jang, Jeong Wook Seo, Rafael Alejandro Cornejo Rodríguez, Lucia L Huang, Yuhan Lee, Ioana Preda, Sameer Sonkusale, Lance Fiondella, Jungmok Seo, Lorenzo Pirrami, Su Ryon Shin
{"title":"Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision-Enabled Guidance System for Personalized Wound Healing.","authors":"Jihyun Kim, Seol-Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra, Yeongseok Jang, Jeong Wook Seo, Rafael Alejandro Cornejo Rodríguez, Lucia L Huang, Yuhan Lee, Ioana Preda, Sameer Sonkusale, Lance Fiondella, Jungmok Seo, Lorenzo Pirrami, Su Ryon Shin","doi":"10.1002/adhm.202401735","DOIUrl":null,"url":null,"abstract":"<p><p>A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm<sup>-1</sup>. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401735","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm-1. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.

通过计算机视觉引导系统辅助自主机械臂打印实现大规模超快无线软生物电子器件制造,促进个性化伤口愈合。
本文介绍了一种用于高级电场组织再生的定制伤口贴片(CARE),其特点是由计算机视觉引导系统引导的自主机械臂打印系统,可快速识别图像。CARE 满足了电疗对柔性、可拉伸和无线粘合生物电子器件日益增长的需求,适合快速适应患者个体情况,并以舒适的设计实现实用化。视觉引导系统集成了一个六轴机械臂,可以从多个角度进行扫描,提供复杂和弯曲伤口的三维地图。电极的尺寸和电源接收线圈的几何形状是 CARE 的重要组成部分,并通过 MATLAB 仿真确定,以确保高效的无线电力传输。三种具有不同流变特性的异质油墨可依次挤出并打印在柔性基底上,从而支持快速制造大型定制生物电子贴片。CARE 能以 88.8 mV mm-1 的电场强度刺激深度达 10 mm 的伤口。体外研究显示,CARE 能使人真皮成纤维细胞和人脐静脉内皮细胞的细胞迁移速度分别加快 1.6 倍和 1.9 倍。这项研究凸显了 CARE 作为一种临床伤口治疗方法在加速伤口愈合方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信