{"title":"Three-dimensional structured PLCL/ADM bioactive aerogel for rapid repair of full-thickness skin defects.","authors":"Xuchao Ning, Runjia Wang, Na Liu, Yong You, Yawen Wang, Jing Wang, Yuanfei Wang, Zhenyu Chen, Haiguang Zhao, Tong Wu","doi":"10.1039/d4bm01214c","DOIUrl":null,"url":null,"abstract":"<p><p>The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels. The composite aerogel was subsequently employed in wound repair experiments on rat full-thickness skin with the objective of observing the wound healing rate and examining histological utilizing H&E, Masson, CD31, and COL-I staining. The findings indicated that the PLCL/ADM composite aerogel with a 10% concentration exhibited uniform pore size distribution, a good three-dimensional structure, and compression properties comparable to those of human skin, which could effectively absorb exudate and exert hemostatic effect. <i>In vivo</i> experiment results demonstrated that the aerogel exhibited superior efficacy to conventional oil-gauze overlay therapy and ADM aerogel in promoting wound healing and could facilitate rapid, high-quality <i>in situ</i> repair of deep wounds, thereby offering a novel approach for skin tissue engineering and clinical wound treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01214c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels. The composite aerogel was subsequently employed in wound repair experiments on rat full-thickness skin with the objective of observing the wound healing rate and examining histological utilizing H&E, Masson, CD31, and COL-I staining. The findings indicated that the PLCL/ADM composite aerogel with a 10% concentration exhibited uniform pore size distribution, a good three-dimensional structure, and compression properties comparable to those of human skin, which could effectively absorb exudate and exert hemostatic effect. In vivo experiment results demonstrated that the aerogel exhibited superior efficacy to conventional oil-gauze overlay therapy and ADM aerogel in promoting wound healing and could facilitate rapid, high-quality in situ repair of deep wounds, thereby offering a novel approach for skin tissue engineering and clinical wound treatment.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.