Obstacle-enhanced spontaneous oscillation of confined active granules.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-11-11 DOI:10.1039/d4sm01027b
Xue Zhang, Yuxin Tian, Ran Ni, Yong Zhu, Luhui Ning, Peng Liu, Mingcheng Yang, Ning Zheng
{"title":"Obstacle-enhanced spontaneous oscillation of confined active granules.","authors":"Xue Zhang, Yuxin Tian, Ran Ni, Yong Zhu, Luhui Ning, Peng Liu, Mingcheng Yang, Ning Zheng","doi":"10.1039/d4sm01027b","DOIUrl":null,"url":null,"abstract":"<p><p>Spontaneous oscillation in particle numbers has been reported recently, in which two chambers connected by a narrow channel are alternately filled and emptied by self-propelled particles. The challenge in realizing the application of this oscillation lies in promotion of the oscillatory periodicity. By placing an asymmetric obstacle at an appropriate position near a channel opening, we can significantly improve the oscillation quality, which approaches the quality of an ideal oscillation. Additionally, we experimentally explore the relationship between the oscillation quality and various system parameters such as the obstacle position. Based on experimental observations, we incorporate a random noise into our previous model and properly reproduce the experimental results. The agreement between theory and experiment uncovers the mechanism of delicate competition between noise and unidirectional particle flow in influencing the oscillation quality. Our findings provide new insights for the optimization of the oscillation quality, expand the conventional rectification capability of the ratchet effect due to the obstacle, and make it possible for spontaneous oscillation to serve as a reliable source for rhythmic signals.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01027b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous oscillation in particle numbers has been reported recently, in which two chambers connected by a narrow channel are alternately filled and emptied by self-propelled particles. The challenge in realizing the application of this oscillation lies in promotion of the oscillatory periodicity. By placing an asymmetric obstacle at an appropriate position near a channel opening, we can significantly improve the oscillation quality, which approaches the quality of an ideal oscillation. Additionally, we experimentally explore the relationship between the oscillation quality and various system parameters such as the obstacle position. Based on experimental observations, we incorporate a random noise into our previous model and properly reproduce the experimental results. The agreement between theory and experiment uncovers the mechanism of delicate competition between noise and unidirectional particle flow in influencing the oscillation quality. Our findings provide new insights for the optimization of the oscillation quality, expand the conventional rectification capability of the ratchet effect due to the obstacle, and make it possible for spontaneous oscillation to serve as a reliable source for rhythmic signals.

受限活性颗粒的障碍增强自发振荡。
最近有报道称,粒子数量的自发振荡是指由狭窄通道连接的两个腔室被自推进粒子交替填充和排空。实现这种振荡的应用所面临的挑战在于促进振荡周期性。通过在靠近通道口的适当位置放置非对称障碍物,我们可以显著改善振荡质量,使其接近理想振荡的质量。此外,我们还通过实验探索了振荡质量与障碍物位置等各种系统参数之间的关系。根据实验观察结果,我们在之前的模型中加入了随机噪声,并正确地再现了实验结果。理论与实验之间的一致性揭示了噪声与单向粒子流之间微妙的竞争机制对振荡质量的影响。我们的发现为振荡质量的优化提供了新的见解,拓展了棘轮效应因障碍物而产生的传统整流能力,并使自发振荡成为节奏信号的可靠来源成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信