J Roberto Romero-Arias, Alberto S Luviano, Miguel Costas, Aurora Hernández-Machado, Rafael A Barrio
{"title":"Interfacial viscoelasticity in oscillating drops of cyclodextrin-surfactant aqueous solution: experiments and theory.","authors":"J Roberto Romero-Arias, Alberto S Luviano, Miguel Costas, Aurora Hernández-Machado, Rafael A Barrio","doi":"10.1039/d4sm01007h","DOIUrl":null,"url":null,"abstract":"<p><p>We present experiments involving oscillating droplets in aqueous cyclodextrin-surfactant solutions. In these experiments, α-cyclodextrin (αCD) and anionic surfactants exhibit remarkable viscoelasticity at the liquid/air interface, with dilatational modulus varying across orders of magnitude. This rheological response depends on the concentrations of different complexes in the solution, particularly of the 2 : 1 inclusion complexes formed by two αCD molecules (αCD<sub>2</sub>), and one surfactant (S). We propose a model that describes the distribution of these complexes on the droplet surface using a free energy approach, accounting for dipole-dipole interactions. The results of the model reproduce the interfacial behavior of the viscoelastic modulus and phase shift in excellent agreement with the data, clearly indicating that dipole-dipole interactions determine and control the viscoelastic properties of the drops.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01007h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present experiments involving oscillating droplets in aqueous cyclodextrin-surfactant solutions. In these experiments, α-cyclodextrin (αCD) and anionic surfactants exhibit remarkable viscoelasticity at the liquid/air interface, with dilatational modulus varying across orders of magnitude. This rheological response depends on the concentrations of different complexes in the solution, particularly of the 2 : 1 inclusion complexes formed by two αCD molecules (αCD2), and one surfactant (S). We propose a model that describes the distribution of these complexes on the droplet surface using a free energy approach, accounting for dipole-dipole interactions. The results of the model reproduce the interfacial behavior of the viscoelastic modulus and phase shift in excellent agreement with the data, clearly indicating that dipole-dipole interactions determine and control the viscoelastic properties of the drops.